

Earthquakes: Big Ideas

- Humans cannot eliminate natural hazards but can engage in activities that reduce their impacts by identifying high-risk locations, improving construction methods, and developing warning systems
- Water's unique physical and chemical properties are essential to the dynamics of all of Earth's systems
- Understanding geologic processes active in the modern world is crucial to interpreting Earth's past
- Over Earth's vast history, <u>catastrophic</u> processes have produced enormous changes
- Earth scientists do reproducible experiments and collect multiple lines of evidence.

Earthquakes

- earthquake: movement of rock bodies past other
- fault: locus of the earthquake movement
- faults come at all scales, mm to separation of lithospheric plates (*e.g.*, San Andreas).

Earthquake terms

focus: site of initial rupture

epicenter: point on surface above the focus

• Therefore, you need at least three stations to determine the location of an epicenter.

Measuring the Force of Earthquakes

- 1. Surface displacement
 - 1964 Alaska earthquake displaced some parts of the seafloor by ~ 50 ft.
 - 1906 San Francisco earthquake moved the ground ~8.5 ft.
- 2. Size of area displaced

Alaska — 70,000 sq. miles

Measuring the Force of Earthquakes

- 3. Duration of shaking Up to tens of seconds
- 4. Intensity scales Based on damage and human perception
- 5. Magnitude scales based on amount of energy released

Intensities Associated With the 1811 Earthquake at New Madrid, Missouri

note a shortcoming of intensity scales: not very many people lived to the west of this EQ so no intensity observations are available.

Distribution of Earthquakes

- <u>not</u> random
- focused around plate margins (but also seen in plate interiors)

Motion of Pacific Plate relative to motion of North American Plate

Damage depends on Construction/Population

Event	Magnitude	Geologic Effects	Destruction
Loma Prieta, California October 1989	7.1	Maximum intensity in parts of Oakland and San Francisco; landslides; soil liquefaction; small tsunami at Monterey	60 killed: 3757 injured: U.S. 57 billion in damage
Landers, California June 1992	7.3	Surface faulting along a 70-km segment with as much as 5.5 m of horizontal displacement and 1.8 m of vertical displacement	1 killed; 400 injured; substantial damage
Northridge, California January 1994	6,9	A maximum uplift of 15 cm occurred in Santa Susana Mountains; many rockslides; ground cracks: soil liquefaction	58 killed; 7000 injured; 20,000 homeless; U.S. \$20 million in damage
Northern Bolivia June 1994	8.2	At 637 km depth, the largest deep earthquake on record; first earthquake from this part of South America to have been felt in North America including Canada	Several people killed
Kobe, Japan January 1995	6.9	Surface faulting for 9 km with horizontal displacement of 1.2 to 1.5 m; soil liquefaction	5502 killed; 36,896 injured; 310,000 homeless; severe damage

Earthquake Damage: Landslides

all kinds of mass wasting

liquefaction – sudden loss of strength in water-saturated sediment buildings fall down intact

Earthquake Prediction

- Long term—imprecise (but possible)
- Short term—precise (very difficult)
- We can't stop earthquakes, so we have to be prepared for them

Earthquake Prediction

- •Small earthquakes
- •Ground tilting
- •Change in water levels in wells
- •Change in acoustic
- or electrical properties
- •Animal behavior?

