Coasts: Big Ideas

* Humans cannot eliminate natural hazards but can
engage in activities that reduce their impacts by
identifying high-risk locations, improving construction
methods, and developing warning systems

* Water's unique physical and chemical properties are
essential to the dynamics of all of Earth’s systems

« Earth’s systems are dynamic; they continually react to
changing influences from geological, hydrological,
physical, chemical, and biological processes

* Humans cause global change through fossil fuel
combustion, land-use changes, agricultural practices,
and industrial processes

J%pf the U.S. population
within 75 km of a coast

High Tech Methods
for Surveying the Deep Sea Floor
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Topographic Profile Across the North Atlantic
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Major Physiographic Features
in the Atlantic Ocean

continental margin

— continental shelf

— continental slope

— continental rise

» abyssal plain

« seamounts and guyots
* Mid-ocean ridge

— abyssal hills

— central rift valley

Continental Shelf

A broad, flat platform extending from the
shoreline to the beginning of the continental
slope. Usually less than 200 m deep, it may
extend 100's km offshore. It is underlain by
continental crust.
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Continental Slope

A steeper (~4°) , typically mud-draped slope
marking the edge of the continental shelf.

Deep-sea fan
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Continental Rise

A gently sloping apron of sediment formed by
deposition of sands and muds at the base of
the continental slope (typically at depths of 2-3
km). May include large submarine fans
underlain by several kilometers of sediment.
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Abyssal Plain

This plain extends beyond the continental rise typically
4-6 km below sea level. It is the flattest surface on the
earth. May include submerged volcanoes called
Seamounts.
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Carbonate Compensation Depth
(Ccb)

The depth below which
carbonate tends to dissolve.
Only siliceous shells can be

found below the CCD.
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Fig. 20.19

“Black Smoker” Hydrothermal Vent




Topographic Profile Across the South Pacific
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Coastal Landscapes are Highly
Variable, Depending on:

stability of the coastal region

— (e.g. uplifting, subsiding, stable)

¢ nature of rocks or sediments at the
shoreline

long-term changes in sea level

e wave energy

tidal energy

Sandy Barrier Coastline of N. Carolina

Fig. 20.1

Rocky, Glaciated Coastline of Maine




Wave Cut Cliffs and Sea Stacks, Australia

Fig. 20.1

Coral Reef Coastline, Florida%s
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Wave-generated Orbital Waves
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Wave Refraction:
the bending of waves as they change velocity
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Bending of wave crests due to refraction as waves slow
down in progressively more shallow water depths

Fig. 20.2

Wave refraction concentrates
energy at headlands, thereby
Rocky headland

causing increased erosion
: ,’m{ /Sandy beach

rE

Wave refraction decreases
energy at bays, thereby
causing increased deposition

Fig. 20.2
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Tidal fluctuations alternately expose and submerge tidal
flats which almost surround Mont-Saint-Michel, France

Tidal flats—=

Fig. 20.4

Ocean tides are the result of the gravitational
attraction of the moon and sun on the ocean. The tides
formed by the moon are the lunar tides, and those
formed by the sun are the solar tides.

POLAR VIEW _______——Minimum=low tide
Maximum = high tide
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Coastal Erosion Rates in the U.S.
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Erosion Fact

30-50% of all the structures
within 500 feet of the present
Gulf shoreline will be lost due to
erosion in the next 60 years

*Source: Heinz Center Report to FEMA, 2000
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Can we prevent coastal erosion?

Structural approaches:

Groins
Jetties
Seawalls
Breakwaters

Non-structural approaches:
beach nourishment
abandonment/relocation/zoning




Groin

Prevents
up-drift erosion

BUT...
causes
down-drift
erosion

Phillp Plissin/Explorer

Beach Nourishment

The artificial addition of sand to the
beach to reduce the rate of beach
erosion.

But, it must be periodically
replenished!

Box 20.2
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Copacabana Beach

Brazil Property Group
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Hurricane Gustav

Baton Rouge, 2008
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