Electronic supplement 1 2 Introducing novices to active-source seismology via SeismicUnixGui 3 4 Juan M. Lorenzo, Michael Hubenthal, Nathan W. Benton, Emilio E. Vera 5 • Design strategy for SeismicUnixGui (SUG) 6 • A Data Set and Tutorial 7 • Figure S1 An image of data from three, raw, muted shotpoint gathers corresponding to 8 Step 8 (Flow 5D) in the online tutorial (see Data and Resources in the main text). 9 References 10

11

Design Strategy for SeismicUnixGui (SUG)

SUG (Figure 2, in main body of text) is built with Perl/Tk (Simmons and Rézic, 2024), a mature, well-documented and free Perl-based extension of the Tk GUI toolkit (Ousterhout, 1993) originally developed for use with the X Window System (Scheifler and Gettys, 1986; X.org, 2024) on Unix (Kernighan and Mashey, 1979). For reference, Tkinter (Lundh, 1999), which is the default graphical user interface for Python (2024), is also based on the same toolkit. SUG development blends an early procedural programming style that evolved through extensive refactoring toward an object-oriented programming approach. Perl/Tk organization lends itself to the use of a specialized extension to Perl, known as Moose (Etheridge, 2024), which facilitates an object-oriented style in programming.

In SUG, application of the wrapper scripts does not modify the original SU code, and the user is unaware of the repeated background loop calculations that ensue. New options added by wrappers can be ignored by the user or readily removed in later updates to SU modules. Wrappers can help introduce intuitive and easier-to-understand names for variables that more directly express their functionality. For example, instead using of a non-descriptive variable name such as "b" to determine the maximum amplitude for display in a plot, the user is provided with a more self-explanatory name such as "high-clip", which is intuitively more obvious to the user. In addition, to aid beginning students, the classical SU help manual for each module can be made to appear conveniently in a separate window with a click of the third mouse button. For comparison, SWIG (2024), a popular wrapper software development tool that allows reuse of programs written in C and C++, builds its wrappers using C code.

34 A Data Set and Tutorial

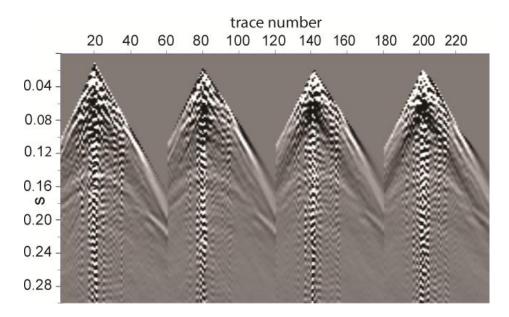


Figure S1. An image of data from three, raw, muted shotpoint gathers, corresponding to Step 8 (Flow 5D) in the online tutorial (see Data and Resources in the main text).

References

35

36

37

38

- 39 Etheridge, K. (2024). Moose, postmodern object system for Perl 5,
- https://metacpan.org/pod/Moose, last accessed October 23, 2224.
- 41 Kernighan, B. W., and J. R. Mashey. (1979). The UNIXTM programming environment, Software:
- 42 Practice and Experience, 9, 1-15.
- Lundh, F. (1999). An introduction to tkinter, accessed October 8, 2024 at
- https://web.archive.org/web/20130512143826/http://www.pythonware.com/library/tkinter/intr
- 45 oduction/index.htm

- Ousterhout, J. K. (1993). Tcl and the Tk Toolkit, Addison-Wesley Professional Computing
- Series, Addison-Wesley Publishing, Reading, MA Python, (2024) https://www.python.org/,
- last accessed October 23, 2024.
- 49 Scheifler, R. W., and J. Gettys (1986). The X window system, ACM Transactions on Graphics 5,
- 50 79-109.
- 51 Simmons, N.-I., and S. Rézic (2024). Tk- A graphical user interface toolkit for Perl., Available
- from https://metacpan.org/dist/Tk/view/Tk.pod (Version 804.036., last accessed October
- 53 2024)
- 54 SWIG, (2024). Simplified Wrapper and Interface Generator, https://www.swig.org/, last accessed
- 55 October 24, 2024.
- X.org, (2024), https://www.x.org/wiki/XorgFoundation/, last accessed, October 23, 2024.