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We present a new, impulsive, horizontal shear source capable of performing long shot profiles in a time-
efficient and repeatable manner. The new shear source is ground-coupled by eight 1/2″ (1.27 cm)×2″
(5.08 cm) steel spikes. Blank shotshells (12-gauge) used as energy sources can be either mechanically or
electrically detonated. Electrical fuses have a start time repeatability of b50 μs. This source can be operated by
a single individual, and takes only ~10 s between shots as opposed to ~30 s for six stacked hammer blows. To
ensure complete safety, the shotshell holder is surrounded by a protective 6″ (15.24 cm)-thick barrel, a push-
and-twist-locked breach, and a safety pin.
We conducted field tests at the 17th Street Canal levee breach site in New Orleans, Louisiana (30.017° N
90.121° W) and at an instrumented test borehole at Millsaps College in Jackson, Mississippi (32.325° N
93.182°W) to compare our new source and a traditional hammer impact source. The new shear source produces
a broader-band of frequencies (30–100 Hz cf. 30–60 Hz). Signal generated by the new shear source has
signal-to-noise ratios equivalent to ~3 stacked hammer blows to the hammer impact source. Ideal source signals
must be broadband in frequency, have a high SNR, be consistent, and have precise start times; all traits of the new
shear source.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Near-surface seismic research uses a variety of seismic sources to
characterize the subsurface (Hasbrouck, 1991; Jolly, 1956; Miller et al.,
1986, 1992; Yordkayhun et al., 2009). Ideal shallow seismic sources
need to impart short, repeatable, broadband signals into the earth. Signal
production should also be consistent in total energy and spectral content
(Steeples, 2000). The source signature needs to be repeatable, so that
changes in the seismic signal can be attributed solely to geological and
geophysical anomalies. Sources capable of generating low-energy pulses
are also important. Baker et al. (2000) conclude that a low-energy source
(0.22-caliber rifle) produces a broader-band signal than high-energy
sources (sledgehammer or 30.06 rifle). Inelastic deformation or fracture
of large volumes of earth, stressed beyond their elastic limits, adversely
affects the source wavelet by decreasing the higher frequency spectral
components of the signal.

Comparisons between shallow P-wave sources show that a variety
of seismic sources are adequate when surveying the subsurface, each
potentially superior at different sites. Good seismic sources have com-
mon characteristics (Miller et al., 1986). The signal-to-noise ratio (SNR)

should be high, but interpretable seismic data have resulted from SNRs
as low as 1 (Guo and Zhao, 2010). Frequency content needs to be broad-
band in order to produce the narrowest pulse in the time section (Rioul
and Vetterli, 1991). Measurement of t0 (signal initiation time) should
also be precise and accurate. Incorrect t0 measurements can lead to
calculated Vs (shear wave velocity) errors as high as 50%. (Silver and
Tiedemann, 1977). Seismic sources should also have low site preparation
requirements, small cycle times, and low environmental impact. These
sources are ideally portable, inexpensive (b$2000), safe, and require
minimal personnel.

Whereas most seismic sources generate P-waves, shear wave pro-
duction and interpretation have several advantages (Wills et al., 2000).
In comparison to P-waves, S-waves are less affected by soil saturation
and less attenuated in gas-charged, organic-rich sediments (Pugin et
al., 2004; Wilkens and Richardson, 1998). On the other hand, SH-waves
(horizontally polarized shear waves) are relatively insensitive to pore-
fluid moduli (Gregory, 1976) and can improve resolution, relative to
P-waves. The improved resolution results from slower seismic shear
wave velocities over similar frequency bands (Johnson and Clark,
1991). SH-waves do not convert to P or SV-waves (vertically polarized
shear waves) when reflecting from a horizontal boundary because
displacement in the propagating wave remains in the horizontal plane.
Seismic methods, utilizing shear wave analysis, are ideal for characteriz-
ing the shallow subsurface structural strength, via proxy of the shear
modulus (Silver and Tiedemann, 1977; Turesson, 2007). Estimates of
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elastic moduli in shallow (0–30 m) natural soils can be particularly use-
ful in seismic hazard studies (Wills et al., 2000).

A variety of shear sources have been implemented in the past. One of
the more popular near-surface sources consists of a hammer striking a
ground-coupled vertical plate on its largest exposed surface, generating
shear waves perpendicular to the direction of the blow (Hasbrouck,
1991). Jolly (1956) constructed a recoil device coupled to the ground

by spikes. Detonation of a small charge of dynamite produced the hori-
zontal force needed to produce shear waves traveling perpendicular to
the direction of escaping gas (Jolly, 1956). More invasive, seismic shear
wave sources involve impacts or explosive detonations on the wall of a
trench or borehole (Garotta, 1999). Herein, we develop a recoil device
(Jolly, 1956) that can be implemented as a single-user, light-weight
(17.9 kg), impulsive, ground-surface-coupled SH-wave generator. This
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source can be used to collect several hundred shotpoint gathers per day.
We test this new shear source to investigate several source attributes,
focusing on total output energy, spectral content, and repeatability.

2. Materials and methods

2.1. Mechanical design of new shear source

Our source (Fig. 1) consists of a thick-walled (21/8″/5.4 cm) cylinder
(5″/12.7 cm diameter), mounted so that it expels gas horizontally. Two
U-shaped holders cradle the cylinder and secure it to the base-plate
which is coupled to the ground by 8 steel spikes. The cylinder is overly
thick (3″/7.6 cm breech plug rear of the charge and 2 1/8″/5.4 cm
thick barrel wall) to ensure complete safety during use. Normal safety
standards for this type of device require a 3/4″/1.9 cm thick steel breech
plug rear of the charge and a 0.375″/9.825 mm thick steel barrel wall
(The North–south Skirmish Association, 2010).

The breech confines a 12-gauge shotgun shell to the shell-holder, a
metal tube which inserts securely into the cylinder and eases loading
and unloading of the shell. The 45 grain (2.4 g) black-powder (FFF)
charge propels ~24 g Fe3O4, an inert, environmentally safe ballast. A
dual-use firing pin threads into the double-bolt-action breech allowing
the powder charge to be detonated either mechanically or electrically.
Produced heat and sound are confined by a detached, exterior cover
consisting of a wooden box padded with foam. This box greatly attenu-
ates sound waves, minimizing noise when used in urban settings.

2.2. Field test

We conduct field tests at the 17th Street Canal levee breach (Rogers
et al., 2008) site inNewOrleans, Louisiana (30.017°N, 90.121°W) and at
an instrumented test borehole atMillsaps College in Jackson,Mississippi
(32.325° N, 93.182° W) to compare our new source and a traditional
hammer impact source (Fig. 2). Seismic experiments at the 17th Street
Canal site included a series of shotpoint gathers (Thomas et al., 2002)
and a pseudo-walkaway test (Vincent et al., 2005) intended to test the
repeatability of the source. The instrumented borehole is selected as a
test site because of the well-documented lithology (Butler and Harris,
2008) and the availability of a three-component downhole geophone.
The direct-arrival at the borehole is used to analyze the direct-arrival
signal quality.

2.2.1. Background geology of the test sites
Background geology of test sites is importantwhenmaking assump-

tions on how a particular sourcewill perform at other locations because
source signal is highly influenced by physical properties of the propa-
gating media. An initially broadband signal generated by a common
source will have different spectral characteristics when recorded at
the sensor that depend on the degree of attenuation experienced
along its travel path. Higher attenuation and slower seismic velocities
are expected in the unconsolidated sands and clays at our test sites be-

Table 1
Seismic acquisition equipment and parameters at the 17th Street Canal site. Abbreviations: record length (RL), sample interval (SI), total number of geophones (G), geophone spacing
(ΔG), and the smallest shot-receiver offset (X). Geophones lie along a N–S line with an E–W orientation .

17th St. Canal Equipment

Hammer source (3.6 kg hammer and 27.9 cm of 15.2×15.2 cm I-beam)
Acquisition system 24 channel, 24 bit R24 Geometrics seismograph
Geophone type Mark Products L-28D 30 Hz Horizontal

New shear source
Acquisition system 2400 channel, 24 bit Sercel SN388 seismograph

powered by a diesel generator
Geophone type Mark Products L-28D 30 Hz Horizontal

Hardware settings

RL SI G ΔG X

Hammer source 1 s 250 μs 23 30 cm 30 cm
New shear source 3 s 1 ms 23 1 m 1 m
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Fig. 3. Stratigraphic columns. Descriptions of A) sediments along the 17th Street Canal
and B) around the instrumented borehole at Millsaps College, Mississippi. Formation
names label the Millsaps sediments. Informal names and descriptions identify sediments
at the New Orleans, Louisiana site. At the Millsaps College site, events emanate from
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cause unconsolidated materials are less elastic than their consolidated
counterparts (Fernandez and Santamarina, 2001; Jarrard et al., 2000).

Sediments along the 17th St. Canal (Fig. 3A) comprise unconsolidated,
layered marsh and swamp deposits atop clays, silt, and sand (Rogers et
al., 2008). At the Millsaps site (Fig. 3B) an instrumented test hole, cased
with a 2 1/2″ (6.35 cm) inner diameter (ID) PVC pipe, grouted into
place, penetrates approximately 3 mof pre-loess terrace deposits (coarse
sand and gravel), Pleistocene in age. Underlying the terrace deposits is
approximately 26 m of the Yazoo Clay, Upper Eocene in age (Butler and
Harris, 2008).

2.2.2. Seismic acquisition and array geometry
At the 17th Street Canal site, a different acquisition system (Table 1)

is implemented for each source. Geophones mounted to steel plates
allow faster sensor deployment (Lorenzo et al., 2006). However, when
using the new shear source, shotpoint gathers show high frequency
noise as a result of energy propagating through steel cables connecting
each plate. The high frequency noise ismuch higher (300–400 Hz) than
the frequency content of the shear-wave arrivals and is filtered from the
data set. The plates are not connected by cableswhen using the hammer
impact source. Setting up the new source and moving the geophones
15 m between shotpoints takes ~5 min with two people attending to
the source and receivers, and oneperson controlling the acquisition sys-
tem. The acquisition system used with the new source utilizes a diesel
generator which emits additional noise. This noise has a dominant fre-
quency of 60 Hz, but is several orders of magnitude lower in amplitude
than the first shear arrival.

The upper ~8 m of sediment was surveyed using a range of 1–24 m
source–receiver offsets (Table 1). This shallow zone (0–8 m) is impor-
tant because many levee breaches, i.e., 17th Street and London Avenue
Canals in NewOrleans, Louisiana, originatewithin these depths (Rogers
et al., 2008). Twenty shotpoint gathers (15 m shotpoint spacing) were
collected with the new shear source. Four gathers (6.9 m shot spacing)
of a pseudo-walkaway test were collected with the hammer impact
source.

Source signal generated by hammer blows on each side of the
I-beam improves seismic data quality because the shear arrivals are of
opposite polarity and constructively interfere upon subtraction. The
compressional arrivals are of the same polarity and cancel out when
the signals are subtracted (Helbig, 1987). For the new shear source, a
single shot proved adequate.

At theMillsaps testwell site (Table 2), a three-component geophone
is fixed at depths of 15 m and 30 m in the borehole. We shot from the
surface, 2 m and 1 m west of the borehole, with the hammer impact
source and the electro-mechanical shear source, respectively.

2.2.3. Seismic analysis
Total energy, SNR, and frequency content analyses show differences

between data collected after generating signal with the two sources
(Table 3, Figs. 6, 7 and 8). The sum of the absolute trace amplitudes
and SNR are both estimates of source strength. At the 17th St. Canal, a
comparison of the sum of the trace amplitudes is an unreliable method
of measuring source strength because a different acquisition system is
used for each source. With comparable noise, SNR is a good indicator
of source signal energy regardless of the gain on the respective acquisi-
tion systems. The SNR (Fig. 8) for each source is calculated by dividing
the RMS amplitude of the first shear wave arrivals by the RMS ampli-
tude of the background noise (Fig. 4). Data prior to the air blast are con-
sidered noise. Data collected after using the new shear source have SNR
of ~3 stacked blows to the hammer-impact source. Peak frequency and
frequency range of the data indicate the seismic resolution of the data
set. Frequency range and peak frequency are taken from the Fourier
transform of the first arrival in the nearest offset trace. Peak frequency
is the frequency of the amplitude spectra with the highest amplitude.
Frequency range outlines frequencies having amplitudes >10% of the
peak frequency.

Repeatability is measured in the frequency domain because con-
sistency in the frequency spectrum is more indicative of repeatability
than a constant raw amplitude in the time domain (Aritman, 2001). A
measure of the repeatability (Figs. 9 and 10) of the source can be
taken as follows:

Repeatability ¼ 1− 1
ffiffiffi
n

p ∑i
ATracei−AReferencei

AReferencei

�
�
�
�
�

�
�
�
�
�

ð1Þ

where n is the number of samples in a frequency amplitude spectrum
and ATrace is the amplitude at each frequency. Reference amplitudes
(AReference) are derived from the amplitude spectra of the first shotpoint
gather (Fig. 9, shot 1) (0–150 Hz). The new shear source repeatability
increases above 90% after approximately 4 m of offset. Repeatability in-
creases to >95% after 9 m offset. The increase in repeatability between
0 and 4 m offset is best explained by shallow heterogeneities and the
decrease of near-source effects (Haase and Stewart, 2010). Analysis of
SNR and repeatability are only performed on data collected at the

Table 2
Seismic acquisition equipment and parameters at the Millsaps test well. Abbreviations: record length (RL), sample interval (SI), total number of geophones (G), geophone spacing
(ΔG), and the smallest shot-receiver offset (X).

Millsaps test well Equipment

Hammer source (1.8 kg hammer and 31 cm of 23×12 cm I-beam)
Acquisition system 24 channel, 24 bit Seistronix RAS-24 seismograph
Geophone type GEOSTUFF BHG-3 3-component 14 Hz

New shear source
Acquisition system 24 channel, 24 bit Seistronix RAS-24 seismograph
Geophone type GEOSTUFF BHG-3 3-component 14 Hz

Hardware settings

RL SI G ΔG X

Hammer source 0.5 s 250 μs 2 15 m 15 m
New shear source 0.5 s 125 μs 2 15 m 15 m

Table 3
Seismic attributes. Energy content and frequency analyses including sum of absolute
amplitudes (∑ A) of the entire dataset, along with frequency range (f Range), peak
frequency (peak f) (Fig. 7), and maximum amplitude (Max A) (Fig. 7) analyses of the
source wavelet.

∑ A f Range (Hz) Peak f (Hz) Max A

17th St. Canal
Hammer source 6.3×109 30–60 45 5.4×106

New source 1.0×105 30–100 65 1.3×103

Millsaps test well
Hammer source 1.3×108 30–80 50 4.7×104

New source 8.0×107 30–130 78 1.2×104
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17th St. Canal site, because of the larger number of gathers and geo-
phones at that location.

Precision in t0 measurements is investigated by measuring the time
between initiating the shot and the burning of the fuse, which repre-
sents the shot fire time (Fig. 11). The fuse is embedded in the black
powder contained within the electrically detonatable shells. High volt-
age and current (350 V, 8.5 A) cause a 10 Ω fuse to burn. The burning
of the fuse and ignition of the black powder are assumed to be simulta-
neous because black powder instability allows for fast detonation. Three

tests show that the fuse burns within 20 μs of shot initiation by the
operator.

At the Millsaps test well site, traces derived from the N–S oriented
component of a three component geophone highlight the differences
between shear wave data (Fig. 12) generated by the new source and
the hammer source. A time-domain polarization filter calculated from
eigenvectors of the co-variant matrix for the three component data
(Montalbetti and Kanasewich, 1970) suppresses tube waves produced
by the new source and ringing produced by the hammer source.
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Hodogramanalyses are useful to confirma commonNW–SE polarization
for both the shearwave direct arrivals (Fig. 12A) and reflections (Fig. 12B
and C).

3. Results and discussion

At the 17th St. Canal site, a traditional hammer and I-beam impact
source and the new, electro-mechanical shear wave generator produce
data of similar SNR, 40–55 dB at 1 m source–receiver offset (Fig. 8). The
SNR is similar; however, the new shear source produces an overall
higher frequency signal (30–100 Hz cf. 30–60 Hz) at near offsets

(1–4 m) (Table 3; Figs. 5, 6, and 7) and appears to have more signal
energy at farther offsets as well (Figs. 4 and 5). This is also supported
by a smaller decline rate in the SNR trend (Fig. 8) for the new source,
at farther offsets. Additional noise emitted while using the new shear
source would explain why the decrease in SNR, as source–receiver off-
set increases, is greater (~1 dB/m) with the hammer source than the
new source. The resolution appears better for the new source because
the data have a higher dominant frequency (~65 Hz cf. ~45 Hz) (Fig. 7).
The differences in generated frequencies may be explained by the more
impulsive nature of the recoil. A sharper impulse in the time domain
translates to a broader pulse in the frequency domain.

Other factors also contribute to the viability of a new shear source.
The new shear source is highly portable, weighing b20 kg. The cost of
the source is fairly low, bUS$2000 for the source and ~US$0.35 per
shotshell. The cost for the source includes raw material cost plus
labor. Shotpoint cost is calculated from raw materials alone: empty
shotgun shell, black powder, padding, and ballast. Site preparation
requirements are minimal; all that is needed is a fairly undisturbed sur-
face with which the spikes can couple. The time necessary to reload a
shotshell into the source is short; b1 min.

Whereas the electro-mechanical shear source has advantages over
the hammer impact source in shallow seismic investigations, further
modifications could increase its efficacy. Potentially, higher total energy
can be input into the earth. An increase of the contact area between the
source and the ground and an increase in the amount of recoil may
increase the amount of energy transmitted. More spikes, or longer
wedges in place of the spikes, can increase the coupling of the source
to the ground.Muzzle velocity can be increased alongwith recoil energy
by decreasing the exit diameter of the barrel, increasing the barrel
length, or increasing the black powder load. Increasing the ballast load
will also increase recoil, thus increasing imparted energy. These last
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two mechanisms are more important if inelastic deformation does not
increase at a higher rate than the applied force.

4. Conclusions

Whereas a traditional hammer-impact source is useful in a variety of
situations, the new shear source has many advantages. The new source
provides a more broadband impulse (30–100 Hz cf. 30–60 Hz) with a
higher peak frequency (65 Hz cf. 45 Hz) than a traditional hammer im-
pact source. The SNRof signal generated by the new source is equivalent
to approximately 3 stacked blows to a hammer impact source. As a
practical tool, the new shear source is of fairly low cost, portable, safe,
fast, and has minimal environmental impact.
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Fig. 12. Time-domain polarization filtered horizontal (N–S oriented) component seismic
traces acquired at the Millsaps test well after using the hammer source (above) and the
new source (below). NW–SE polarized direct shear arrivals (A) are interpreted at
~0.06 s, confirmed by hodogram analysis. Reflections from impedance contrasts within
the Yazoo Clay (B) and at the Yazoo–Moodys Branch Formation boundary (C) are seen
in both plots, but are more prominent in the new source data.
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