ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM
Content

A simple example wave propagation
An elastic wave is a deformation of the body that travels throughout the body in all directions.  We can examine the deformation over a period of time by fixing our look on just one point in space.  This is the case of fixing geophones or seismometers in the field, or Lagrangian description.

We will begin by a simple case, assuming that we have (1) an isotropic medium, that is that the elastic properties or wave velocity, or not directionally dependent and that (2) our medium is contiunous.  By examining a balance of forces across an elemental volume and relating the forces on the volume to an ideal elastic response of the volume using Hooke’s Law we will derive one form of the elastic wave equation.

Let us begin by examining the balance of forces and mass (Newton's Second Law) for a very small elemental volume.  The effect of traction forces and additional body forces (
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) is to generate an acceleration (
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) per unit volume of mass or density (
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(1) ->To Acoustic Wave Equation


where the double-dot above 
[image: image5.wmf]u

,the denotes the second partial derivative with respect to time (
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).The deformation in the body is achieved by displacing individual particles about their central resting point.  Because we consider that the behavior is essentially elastic the particles will eventually come to rest at their original point of rest.  Displacement for each point in space is described by a vector with a tail at that point.
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Each component of the displacement, 
[image: image8.wmf]i

u

depends on the location within the body and at what stage of the wave propagation we are considering.  

Density (
[image: image9.wmf]r

) is a scalar property that depends on what point in 3-D space we consider:
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or, in other words
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Body forces all the forces external to the elastic medium except in the immediate vicinity of the elemental volume.  For example commonly the effect of gravity is discarded as is the effect of the seismic source if the case is relatively ‘distant’ from the cause, so that the homogeneous (partial differential) equation for motion states that the acceleration a particle of rock undergoes while under the influence of traction forces is proportional to the stress gradients across its surface, and that the acceleration is greater for smaller volume densities, i.e.:
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 (for j=1,2,3)

Each basis vector component of the acceleration as for example 
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 is expressed as
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Finally, in complete indicial notation: 
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Remember from the chapter on strain that the infinitesimal deformation at each point depends on the gradients in the displacement field:
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Empirically, it has been shown that for small strains (
[image: image17.wmf]5
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), and over short periods of time (Lay , Wallace) rocks behave as ideal elastic solids.  The most general form of Hooke’s Law for an ideal elastic solid is:
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where 
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c

is a fourth-order tensor containing de 34=81 elastic constants or matrix components that define the elastic properties of the material in the an anisotropic and inhomogeneous medium.  Each component 
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or elastic constant has dimensions of pressure.  Each component 
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 is independent of the strain 
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and for this reason is called a ‘constant’ although elastic constants vary througout space as a function of position.

We can reduce the number of constants to two in various steps.  First we can reduce the number to 36 because it follows that since
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 are symmetric:
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Through thermodynamic considerations we can demonstrate that
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so that even in the case of anisotropy the number of constants can be reduced to 21.  However, it is possible to often solve many geological problems by considering that rocks have isotropic elastic properties. The assumption of isotropy reduces the number of independent elastic constants to just 2.  In summary for an isotropic, continuous medium we can reduce the elastic constant tensor to the following:
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where 
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are known as the Lamé elastic parameters or properties.  Lamé parameters 
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y 
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can be expressed in terms of other familiar elastic parameters such as Young’s modulus 
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 and Poisson’s ratio 
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:



[image: image35.wmf])

2

1

)(

1

(

s

s

s

l

-

+

=

E

;
[image: image36.wmf])

1

(

2

s

m

+

=

E


Other elastic parameters can also be expressed in terms of 
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y 
[image: image38.wmf]m

.  For example, incompressibility 
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relates the change in pressure surrounding a body to the corresponding relative change in volume of the body:
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Substitution of equation (5) into equation (4) shows that traction forces and strain are related for an isotrpic medium in the following manner:
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If we add over repeated subindices:
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From the definition of a Kronecker delta, the only terms that will be non-zero and contribute to the stress tensor will be those which make the subindices equal.  That is for the second term on the right of the equals sign, values exist if 
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.  Similarly, for the third term on the right of the equals sign values exist if 
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.  With this simplification we arrive at:
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Because the deformation tensor is symmetric 
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leading to the result that
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(8a)  ->To Acoustic Wave Equation

In experiments we observe displacement, ground velocity and acceleration so it makes sense to express the stresses in terms displacements, 
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or, in complete indicial notation:
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(8b)

since 



[image: image53.wmf](

)

i

j

j

i

ij

u

u

e

,

,

2

1

+

=

 and 
[image: image54.wmf]u

u

e

e

e

e

k

k

kk

r

×

Ñ

=

=

+

+

=

,

33

22

11


Note too that 
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is the relative change in volume, for infinitesimal deformations)

We obtain the wave equation for displacements in a general isotropic medium by substituting (8b) into the equation of motion
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 after expansion using the product rule.  

Let us take each of the terms on the right hand side separately to demonstrate the application of indicial notation.  For each term i only the case where j=i can contribute in the Kronecker delta, so
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because we can interchange the repeated k’s by repeated j’s because they both signify summation over the range of values for j; i.e., 1 through 3.
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(9)

After some algebra we show that an alternative expression can be obtained by adding  (9) vectorially from 
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 to arrive at:
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Two fundamental body wave types: P waves and S waves

From the equation of motion (10) in vectorial form, we can demonstrate (Poisson, 18..), that in an infinite elastic, and isotropic, homogeneous medium two types of particle motion associated with traveling trains of deformation can be predicted.

Since 
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are constant in a homogeneous medium, we have that 
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both equal zero because there are no spatial changes in their values.  This leaves:
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But, we can use the identity:
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(11)

Now, if we take the divergence of (11) while keeping in mind that:
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we can simplify the expression to because the second term on the right becomes zero because 
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 is a vector quantity, and its rotational is zero (identity 2): 
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We can change variable names by defining a new scalar field variable
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so that the immediately preceding expression looks like:
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In order to propagate this type of deformation through the medium the body must expand and contract (divergence is non-zero)

Now, if we take the rotational of the general equation of motion as expressed in equation (11) i.e.,
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Because 
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 is a scalar field and the rotational of the gradient of this field is zero (identity 3). the first term on the right of the equation goes to zero:
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We can now change variable names by defining a new vector field variable
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so that the immediately preceding expression looks like:
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because the first term goes to zero since the divergence of the rotational of 
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is zero (identity 2)
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A simple example OF wave propagation
(From Ikele and Amundsen, 2005)

Appendix for section on the wave equation

->Back to text
In this section we state that vectorial manipulation of the expression:
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for 
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 leads to the alternative expression: 
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In order to show the steps in detail, let us examine each of the terms 
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 through 
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on the right hand side of equation (9).  

Starting with 
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For 
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