
Analysis of T. J. Hughes Seismic Data

Semester Project

GEOL 4068 – Reflection Seismology

Dr. Juan Lorenzo

December 9, 2010

Introduction
Reflection seismology is, through the analysis of mechanical waves, the science of

examining the earth’s interior. It uses the principles of seismology to estimate the properties of
the Earth’s subsurface from reflected seismic waves. The method requires a controlled seismic
source of energy, such as an explosion, an impact, or a seismic vibrator. The waves are bent,
reflected, refracted, diffracted, and scattered. These waves are then received by hydro or
geophones located in water or on the ground surface/seafloor, respectively.

Acquisition
 Data acquisition is most often done by a string of sensors extending away from the
seismic source. For land data, the singular receiver unit is a geophone sensitive to vertical
ground motion (single units that measure motion in 2 or 3 axial directions are also available). As
the geophone moves with the ground, a conductor is moving in a magnetic field inside the
geophone. By doing so, the device generates a current proportional to the particle velocity of
the earth surface. The result is electrical currents going ultimately to an analog-to-digital
converter. When a shot fires, each group of geophones will begin sending analog data, which is
digitized to form digital data. Where the analog-digital conversion takes place depends on the
equipment in use. Data is ultimately stored in a data recording unit. Often, data is collected for
a shot then the geophones and the source signal are moved systematically in a direction that is
aligned axially with the geophone layout. Doing this achieves signals from a common depth
point (CDP) which is termed common mid-point (CMP) shooting.

About the Data
 The T.J. Hughes dataset was obtained from a land seismic reflection survey along a
Mississippi River levee. The data was located on the machine LGC01 in the seismic reflection
laboratory. The network address of the machine was ‘lgc01@geol.lsu.edu’. The original data
was found in the directory ‘/home/refseis10/LSU1_1999_TJHughes/seismics/data/1999/Z/dat’.
The first shotpoint gather was more northerly than the last shotpoint gather. Below is a table
showing information about the experimental layout and the data.

Number of shot gathers: 100
Offset of 1st geophone from shot: 4.5 meters
Geophone spacing: 3 meters
Number of traces per shot: 24
Shift between successive shots: 3 meters
Recording duration: 1s
Samples per trace: 2048
Delay between shot and recording start: 10 milliseconds before shot
Time between samples: 500 microseconds

Processing

Seismic Unix
Seismic Un*x (SU) is a free seismic reflection analysis software package distributed by

the Center for Wave Phenomena (CWP) at the Colorado School of Mines (CSM). SU runs on
several operating systems, including Linux, Microsoft Windows, and Apple Macintosh, In this
class we used seismic unix in Linux. SU is maintained and regularly updated by CWP at CSM. The
SU home page at the CWP is: http://www.cwp.mines.edu/cwpcodes . SU can be downloaded
from the CWP ftp server and installed on almost any Unix system. It is possible for one to adjust
and expand SU since the source code is also included.

Converting .dat to .su
 Before the data can be processed by Seismic Unix it must be converted from .dat format
to .su format. This is accomplished by using the script convert.pl to convert data from .dat (.sg2)
format to .segy format to .su format. Essentially, .segy data is the same as .su data, but .segy
has a 3200 byte header and 400 byte header at the beginning of the shot gather. The script
convert.pl can be found in the appendix.

Deleting Bad Traces
 Before the frequency spectrum can be analyzed bad traces should be deleted. Bad
traces often have noise at high frequencies which will induce false high frequencies into the
frequency power spectrum. Below is a table showing trace deletions:

File Killed File Killed File Killed File Killed File Killed File Killed
1001 2 1014 19 1050 20 1079 11,12 1087 11,12 1095 11,12
1002 1 1015 18 1051 19 1080 11,12 1088 11,12 1096 11,12
1006 All 1039 23 1052 18 1081 11,12 1089 11,12 1097 11,12
1009 24 1040 22 1053 17 1082 11,12 1090 11,12 1098 1-12
1010 23 1046 All 1075 11,12 1083 11,12 1091 11,12
1011 22 1047 23 1076 11,12 1084 11,12 1092 11,12
1012 21 1048 22 1077 11,12 1085 11,12 1093 11,12
1013 20 1049 21 1078 11,12 1086 11,12 1094 11,12

Killing bad traces was accomplished using the program sukill. File names were changed on good
files to be consistent with files that needed traces killed (e.g. 1002.k.su , 1003.k.su) Trace kills
and file name changes were done manually.

Reversing Traces
 Due to a hardware error one half of the traces within a gather were out of phase with
the other half. This caused an abrupt shift in the data within each gather. This would also cause

http://www.cwp.mines.edu/cwpcodes

errors later in processing, such as when traces of the same CMP were stacked. Correcting this
problem was accomplished by windowing the good and bad half of the data then reversing
(phase shift of 180°) the bad data. The good data and reversed bad data are then concatenated
to form a single corrected file. The script used to do this (rev.sh) can be found in the appendix.
Shown below is an example of the uncorrected and corrected shift in the data.

Gain and Bandpass Filtering
 The next step in processing was gaining and bandpass filtering the data. Gaining the
data corrects for the loss of signal due to spherical divergence by adjusting signal for each trace
to a consistent level for the whole gather or .su file. Without gaining, the file is virtually
unviewable. Gaining is achieved by utilizing the sugain command with automatic gain control
on, agc=1, and a wagc value of 0.1 (should be approximately 1/10 length of dataset in seconds)
Filtering is needed to take out unwanted frequencies from the signal. Most of the signal was
concentrated in frequencies between 10 and 100 Hz. (See Fast Fourier Transform below) The

frequencies chosen for the bandpass filter were 5, 10, 100, 150 (f=5,10,100,150) Also shown
below is data pre and post gaining and filtering. (gainandfilter.sh in appendix)

Minimizing Ground Roll
 Ground roll is the direct arrival of a Rayleigh wave. This often cuts directly through the
data diagonally making it difficult to see features under the ground roll arrival. Ground roll is
best taken care of using f-k filtering. Filtering in the f-k domain is based on samples per trace
slopes that you wish to eliminate from the data. The slopes I chose to eliminate were those
from 30 samples per trace to 60 samples per trace. Most all negative slopes were eliminated
from -100 to 0. Below are images of data before and after f-k filtering. Filtering isachieved by
the use of the program sudipfilter.pl (in appendix). Shown below are pre and post f-k filtering.

Whitening Spectrum
 Spectrum whitening is achieved using spiking de-convolution. Spiking de-convolution
makes peaks in the data more narrow and taller. This is done in the hope of improving the level
of detail within the data. Using the program SpikDecon_P.pl script which uses the SU program
called supef with values for minlag and maxlag equal to 0.00050s and 0.0125, respectively, no

improvement in visualizing the data was seen. Therefore, I chose not to include spiking de-
convolution in processing. Below are images of files before and after spiking de-convolution.

Header Geometry
 Header geometry was created using the script make_header_geometry.sh which utilizes
the program sushw. The correct values were created for shot location (sx), geophone location
(gx), and offset, which equal to gx-sx. These values are needed to calculate appropriate values
for common depth point (CDP). Units for these values were in centimeters due to the fact that
values must be expressed as whole integers. This was taken into account later when calculating
stacking velocities.

Calculating CMP’s
 Common mid-points (CMPs) are equal to CDP’s when dealing with horizontal strata.
CDP’s were calculated using the script makeCMP.sh which utilizes the suchw program. CDP’s
are needed to determine stacking velocities which is the next step.

Stacking Velocities
 Stacking Velocities are needed to correct the curvature of seismic data called normal
moveout (NMO). Seismic velocities usually increase with depth so a few velocities are chosen
for a few travel times in the dataset. Using the script nmo_test.sh stacking velocities were
choosen using a CDP directly in the middle of the dataset (cdp=18375). Velocities from 100000
cm/s to 200000 cm/s were examined every 10000 cm/s. The table below shows the values that
were tnmo and vnmo:

Vnmo (m/s) Tnmo (s)
1100 0.8093
1300 0.1525
1500 0.3150
1800 0.6000

Stacking Final Image
 The final image was created from the script simple_stack.sh. The concatenated traces
were sorted by CDP and offset, stacking velocities were applied, and the traces were stacked
using the time and velocity values in the previous section. Stacking traces of the same CDP
removes noise from the trace. The final image is then analyzed for key features. Below is the
final image.

Conclusions
 The final image is lacking significant features and at first glance appears that not much
information can be taken from the image. However, a clear failed wedge of soil (yellow) is
found at the very surface. There also may be a fault line extending from the left (northern) side
of the failure wedge down into the soil below. Reflections are almost perfectly horizontal
indicating that choices for stacking velocities were good. This concludes the analysis of the T. J.
Hughes dataset.

References
Liner, Christopher L. (2004). Elements of 3D Seismology – Second Edition. Tulsa, Oklahoma:
PennWell Corporation

David Forel, Thomas Benz, and Wayne D. Pennington (2005). Seismic Data Processing with
Seismic Un*x – A 2D Seismic Data Processing Primer. Tulsa, Oklahoma: Society of Exploration
Geophysicists

Lorenzo, Juan. GEOL 4068 Seismic Reflection – Lecture Notes

Reflection seismology - Wikipedia. Retrieved December 8, 2010, from
http://en.wikipedia.org/wiki/Reflection_seismology

Appendix
Convert.pl

#! /usr/bin/perl

PROGRAM NAME : convert.pl
SEG2SU
This file does the following:
It runs perl scripts which convert
a SUnix seg2 binary file to segy file for
a PC

INPUT SEG2 DIRECTORY
$DATA_seismics_SEG2 =
'/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/dat';

OUTPUT SU DIRECTORY
$DATA_seismics_SU =
 '/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su';

OUTPUT SEGY DIRECTORY

http://en.wikipedia.org/wiki/Reflection_seismology

$DATA_seismics_SEGY =
 '/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/sgy';

 @mv2segyDIR = (" mv \\
 $DATA_seismics_SEG2/*.sgy \\
 $DATA_seismics_SEGY \\
 ");

if number of files =8 but first file is "1004.su"
$number_of_files = 1;

INPUT FILE NAMES
for ($i=1,$j=1002; $i <=$number_of_files ; $i += 1,$j +=1){
 $j_char = sprintf("%u",$j);
 $file_name[$i] = $j_char;
 }

CONVERT SEG2 FILES TO SEGY FILES
for ($i= 1 ; $i <= $number_of_files ; $i += 1) {

 @seg2segy = (" ./seg2segy $file_name[$i].SG2 1 ");

 system @seg2segy;

 system 'echo', @seg2segy;

 }

MOVE SEGY FILES TO SEGY DIRECTORY
 system @mv2segyDIR;

 system 'echo', @mv2segyDIR;

CONVERT SEGY FILES TO SU FILES
for ($i= 1 ; $i <= $number_of_files ; $i += 1) {

 @seg2su = (" segyread \\
 tape=$DATA_seismics_SEGY/$file_name[$i].sgy \\
 endian=0
\\
 > $DATA_seismics_SU/$file_name[$i].su \\
 ");

 system @seg2su;

 system 'echo', @seg2su;

 }

Rev.sh

#!/bin/sh
set -x
rev.sh
Reverses traces 13 through 24
James Chatagnier
November 22, 2010

set up working directories

SU_DIR='/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su'

first=1001
last=1100

#rm $SU_DIR/$output_file.su

for ((file=$first; file<=$last; file=$file + 1))
 do

 suwind <$SU_DIR/$file.su \
 key=tracf \
 min=1 max=12 \
 > $SU_DIR/$file.temp_1to12.su

 suwind <$SU_DIR/$file.su \
 key=tracf min=13 max=24 \
 | \
 suop op=neg \
 > $SU_DIR/$file.temp_13to24.su

 cat $SU_DIR/$file.temp_1to12.su \
 $SU_DIR/$file.temp_13to24.su \
 > $SU_DIR/$file.r.su

 done

rm -f $SU_DIR/*temp*

plotting concatenated data

sugain <$SU_DIR/$output_file.rev.su \
agc=1 wagc=0.1 \
| \
sufilter f=3,6,100,160 \
| suxwigb title="$output_file'_polrev'.su"

Sufft.sh

#!/bin/sh

Program Name: SUFFT script
Programmer:James Chatagnier
Purpose:Displays Fast Fourier Transform for a file
Version:1
Date: December 3, 2010

DATA DIRECTORY
SU_DIR='/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su'

fourier analysis fo data
file_name='1010.su'

sufft <$SU_DIR/$file_name \
| suamp mode=amp \
| sugain wagc=.1 agc=1 \
| suximage legend=1 clip=1
#| suxwigb legend=1 clip=5

Gainandfilter.sh

#! /bin/sh
set -x

#Filename:gainandfilter.sh
#Purpose: Gains and filters files, makes new file
#Written by: James Chatagnier
#Date:December 5, 2010

#Set up working Directory and files

SU_DIR='/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su'

first=1001
last=1100

#Loop to apply gain and filter

for ((file=$first; file<=$last; file=$file + 1))
 do
 sugain < $SU_DIR/$file.rk.su \
 agc=1 \
 wagc=0.1 \
 | sufilter \
 f=5,10,100,150 \
 > $SU_DIR/$file.rkgf.su
 done

concatall.sh

#!/bin/sh
set -x
cat.sh
#March 24 2010
Program to concatenate many files together
and review the results
Juan M. Lorenzo

set up working directories
SU_DIR='/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su'
output_file='1001_1100.rk'

rm $SU_DIR/$output_file.su
touch $SU_DIR/$output_file.su

cat all S from E and W

first=1001
last=1100

for ((file_num=$first; file_num<=$last; file_num=$file_num+1))
 do
 cat $SU_DIR/$file_num.rk.su >> $SU_DIR/$output_file.su
 done

#sugain <$SU_DIR/$output_file.su agc=1 wagc=0.5 \
#| \
#sufilter f=3,6,1000,1500
#suximage clip=5 &

sudipfilt.pl

#! /usr/bin/perl

SCRIPT NAME
Suspecfk.pl
Purpose: f-k spectral analysis
Juan M. Lorenzo
Feb 15 2008

Use shell transparently to locate home directory before compilation

 my $library_location;

 BEGIN {
 use Shell qw(echo);

 $home_directory = ` echo \$HOME`;
 chomp $home_directory;

 $library_location = $home_directory.'/lsu/libAll';
 }

LOAD GENERAL PERL LIBRARY
 use lib $library_location;

library path
 use lib './libAll';

use library
 use System_Variables2;

import system variables
 my ($DATA_SEISMIC_SU) = System_Variables2::DATA_SEISMIC_SU();

 #sample rate = us
 # d1 = sample rate in s = .000XXX

sufile names
 $sufile_in[1] = '1001_1100.rk';
 $sufile_out[1] = $sufile_in[1].'gf_fk';
 $inbound [1] = $DATA_SEISMIC_SU.'/'.$sufile_in[1].'.su';
 $outbound [1] =
$DATA_SEISMIC_SU.'/'.$sufile_out[1].'.su';
#print("$sufile_in[1]\n");

GAIN DATA
 @sugain[1] = (" sugain \\
 pbal=1 \\
 ");

GAIN DATA
 @sugain[2] = (" sugain \\
 wagc=0.1 \\
 agc=1 \\
 ");

FILTER DATA
 @sufilter[1] = (" sufilter \\
 f=5,10,100,150 \\
 ");

WINDOW DATA by shot point
in this case fldr
is equivalent to sequential shot point gather number
 @suwind[2] = (" suwind \\
 key=fldr \\
 min=1001 \\
 max=1100 \\

 ");

F-K SPECTRAL ANALYSIS
 @suspecfk[1] = (" suspecfk \\
 dt=1 dx=1 \\
 ");

LINEAR MOVEOUT
 @sureduce[1] = (" sureduce \\
 rv=1.5 \\
 ");

LINEAR MOVEOUT
 @sureduce[2] = (" sureduce \\
 rv=-1.5 \\
 ");

APPLY DIP FILTER
 @sudipfilter[1] = (" sudipfilt \\
 dt=1 dx=1 \\
 amps=1,0,0,1 \\
 bias=0 \\
 slopes=15,25,65,75 \\
 ");

APPLY DIP FILTER
 @sudipfilter[2] = (" sudipfilt \\
 dt=1 dx=1 \\
 amps=1,0,0,1 \\
 bias=0 \\
 slopes=-100,-90,-5,0 \\
 ");

DISPLAY DATA
 #key=offset \\
 @suxwigb[1] = (" suxwigb \\
 title=$sufile_in[1] \\
 label1='No. samples' \\
 label2='No. traces' \\
 d1=1 d2=1 f1=1 f2=1 \\
 wbox=300 hbox=370 xbox=370 ybox=0 \\
 n2tic=1 d2num=20 \\
 va=1 \\
 xcur=3 \\
 clip=2.5 \\
 ");

DISPLAY DATA
 #key=offset \\
 @suxwigb[5] = (" suxwigb \\

 title=$sufile_in[1] \\
 label1='No. samples' \\
 label2='No. traces' \\
 d1=1 d2=1 f1=1 f2=1 \\
 wbox=300 hbox=370 xbox=370 ybox=440 \\
 n2tic=1 d2num=20 \\
 va=1 \\
 xcur=3 \\
 clip=3 \\
 ");

DISPLAY DATA
 @suximage[1] = (" suximage \\
 title=$sufile_in[1] \\
 style=seismic \\
 x1beg=0.5 x1end=0. \\
 label1='Frequency (Hz) dt=1 Nf=0.5' \\
 label2='k (1/m) dx=1 Nk=0.5' \\
 n2tic=1 d2num=0.2 f2num=-0.5 \\
 n1tic=1 d1num=0.1 \\
 wbox=300 hbox=370 xbox=0 ybox=0 \\
 ");

DISPLAY DATA
 @suximage[2] = (" suximage \\
 title=$sufile_in[1] \\
 label1='Time (s)' \\
 label2='No. traces' \\
 n2tic=1 d2num=20 \\
 wbox=300 hbox=370 xbox=670 ybox=0 \\
 ");

DISPLAY DATA
 @suximage[4] = (" suximage \\
 title=$sufile_in[1] \\
 x1beg=0.5 x1end=0. \\
 label1='Frequency (Hz) dt=1 Nf=0.5' \\
 label2='k (1/m) dx=1 Nk=0.5' \\
 n2tic=1 d2num=0.2 f2num=-0.5 \\
 n1tic=1 d1num=0.1 \\
 wbox=300 hbox=370 xbox=0 ybox=440 \\
 ");

DISPLAY DATA
 @suximage[6] = (" suximage \\
 title=$sufile_in[1] \\
 label1='Time (s)' \\
 label2='No. traces' \\
 d1=XX f1=0 \\
 n2tic=1 d2num=20 \\
 wbox=300 hbox=370 xbox=670 ybox=440 \\
 ");

DEFINE FLOW(S)
 @flow[1] = (" \\
 @suwind[2] \\
 < @inbound[1] | \\
 @sugain[2] | \\
 @sufilter[1] | \\
 @suspecfk[1] | \\
 @suximage[1] \\
 & \\
 ");

DEFINE FLOW(S)
 @flow[2] = (" \\
 @suwind[2] \\
 < @inbound[1] | \\
 @sugain[2] | \\
 @sufilter[1] | \\
 @suxwigb[1] \\
 & \\
 ");

DEFINE FLOW(S)
 @flow[3] = (" \\
 @suwind[2] \\
 < @inbound[1] | \\
 @sugain[2] | \\
 @sufilter[1] | \\
 @suximage[2] \\
 & \\
 ");

DEFINE FLOW(S)
 @flow[4] = (" \\
 @suwind[2] \\
 < @inbound[1] | \\
 @sugain[2] | \\
 @sufilter[1] | \\
 @sudipfilter[1] | \\
 @sudipfilter[2] | \\
 @suspecfk[1] | \\
 @suximage[4] \\
 & \\
 ");

DEFINE FLOW(S)
 @flow[5] = (" \\
 @suwind[2] \\
 < @inbound[1] | \\
 @sugain[2] | \\
 @sufilter[1] | \\

 @sudipfilter[1] | \\
 @sudipfilter[2] | \\
 @suxwigb[5] \\
 & \\
 ");

DEFINE FLOW(S)
 @flow[6] = (" \\
 @suwind[2] \\
 < @inbound[1] | \\
 @sugain[2] | \\
 @sufilter[1] | \\
 @sudipfilter[1] | \\
 @sudipfilter[2] | \\
 @suximage[6] \\
 & \\
 ");

DEFINE FLOW(S)
 @flow[7] = (" \\
 @suwind[2] \\
 < @inbound[1] | \\
 @sugain[2] | \\
 @sufilter[1] | \\
 @sudipfilter[1] | \\
 @sudipfilter[2] \\
 > @outbound[1] \\
 & \\
 ");

RUN FLOW(S)
 system @flow[1];
 #system 'echo', @flow[1];

 system @flow[2];
 #system 'echo', @flow[2];

 system @flow[3];
 #system 'echo', @flow[3];

 system @flow[4];
 #system 'echo', @flow[4];

 system @flow[5];
 #system 'echo', @flow[5];

 system @flow[6];
 #system 'echo', @flow[6];

 system @flow[7];
 #system 'echo', @flow[7];

SpikeDecon_P.pl

#! /usr/bin/perl
-w
SCRIPT NAME
SpikDecon_Vertical.pl
PURPOSE:
Spiking Deconvolution
DATE:
Feb 21 2008
VERSION NUMBER:
V1
DATE
May 4 2009
VERSION NUMBER:
V1.1
AUTHOR:
J Lorenzo

Use shell transparently to locate home directory before compilation

 my $library_location;

 BEGIN {
 use Shell qw(echo);

 $home_directory = ` echo \$HOME`;
 chomp $home_directory;
 $library_location = $home_directory.'/lsu/libAll';
 }

LOAD GENERAL PERL LIBRARY
 use lib $library_location;

library path
 use lib './libAll';

use library
 use System_Variables2;

import system variables
 my ($PL_SEISMIC) = System_Variables2::PL_SEISMIC();
 my ($DATA_SEISMIC_SU) = System_Variables2::DATA_SEISMIC_SU();
 my ($date) = System_Variables2::date();

sufile names
 $sufile_in[1] = '1001.rk_fk';
 $inbound[1] = $DATA_SEISMIC_SU.'/'.$sufile_in[1].'.su';

 $outbound[3] =
$DATA_SEISMIC_SU.'/'.$sufile_in[1].'_spikdecon'.'.su';

 use lib './libAll';

GAIN DATA
sugain data
 $text_sugain[1]='pbal ';
 @sugain[1] = (" sugain \\
 pbal=1 \\
 ");

GAIN DATA
sugain data
 $wagc = 0.1;
 $text_sugain[2] = 'wagc='.$wagc;

 @sugain[2] = (" sugain \\
 wagc=$wagc \\
 agc=1 \\
 ");

FILTER DATA
 @bandpass[1] = '0,10,100,150';
 $text_sufilter[1] = 'bpf '.@bandpass[1];

 @sufilter[1] = (" sufilter \\
 f=@bandpass[1] \\
 ");

WINDOW DATA by time
 @suwind[1] = (" suwind \\
 tmin=0 \\
 tmax=1 \\
 ");

DECONVOLUTION
deconvolution data
 # 1 sample=500 us
 $min_lag = 0.00050;
 $max_lag = 0.0125;
 $text_supef[1] = 'Prediction Lag (s) '.$min_lag.' Operator
Lag(s) '.$max_lag;
 @supef[1] = (" supef \\
 minlag=$min_lag \\
 maxlag=$max_lag \\
 ");

DISPLAY DATA
display data

 $windowtitle = @sufile_in[1].' '.$date.' Spiking Deconvolution';
 $title1 = 'P';
 $xlabel = 'offset (m)';
 $tlabel = 'Time(s)';
 $X0 = 0;
 $widthbox = 300;
 $xbox_shift = $widthbox;

DISPLAY DATA
display data
 @suxwigb[1] = (" suxwigb \\
 key=offset \\
 title='$text_sugain[2] $text_sufilter[1] ' \\
 label1='$tlabel' \\
 label2='$xlabel' \\
 xbox=$X0 \\
 wbox=$widthbox \\
 windowtitle='$windowtitle' \\
 clip=5 \\
 ");

#modify variables
 $X0 = $X0 + $xbox_shift;

DISPLAY DATA
display data
 @suxwigb[2] = (" suxwigb \\
 key=offset \\
 title='$text_sugain[2] $text_sufilter[1] $text_supef[1]'
 \\
 label1='$tlabel' \\
 label2='$xlabel' \\
 xbox=$X0 \\
 wbox=$widthbox \\
 windowtitle='$windowtitle' \\
 clip=5 \\
 ");

#modify variables
 $X0 = $X0+$xbox_shift;

DISPLAY DATA
display data
 $windowtitle= @sufile_in[1].' '.$date.' Spiking
Deconvolution';
 $title1 = 'P';
 $xlabel = 'Trace number';
 $tlabel = 'Time(s)';
 $X0 = $X0;
 $widthbox= 300;

 @suximage[1] = (" suximage \\

 title='$text_sugain[2] $text_sufilter[1] ' \\
 label1='$tlabel' \\
 label2='$xlabel' \\
 windowtitle='$windowtitle' \\
 xbox=$X0 \\
 wbox=$widthbox \\
 perc=99 \\
 va=1 \\
 xcur=3 \\
 clip=3 \\
 ");

#modify variables
 $X0 = $X0+$xbox_shift;

 @suximage[2] = (" suximage \\
 title='$text_sugain[2] $text_sufilter[1] $text_supef[1]'
 \\
 label1='$tlabel' \\
 label2='$xlabel' \\
 windowtitle='$windowtitle' \\
 xbox=$X0 \\
 wbox=$widthbox \\
 perc=99 \\
 va=1 \\
 xcur=3 \\
 clip=3 \\
 ");

DEFINE FLOW(s)
 @flow[1] = (" @suwind[1] \\
 < @inbound[1]| \\
 @sufilter[1] | \\
 @sugain[2] | \\
 @suximage[1] \\
 & \\
 ");

DEFINE FLOW(s)
 @flow[2] = (" @suwind[1] \\
 < @inbound[1]| \\
 @sufilter[1] | \\
 @sugain[2] | \\
 @suxwigb[1] \\
 & \\
 ");

DEFINE FLOW(s)
 @flow[3] = (" @suwind[1] \\
 < @inbound[1]| \\
 @supef[1] | \\

 @sufilter[1] | \\
 @sugain[2] | \\
 @suximage[2] \\
 & \\
 ");

DEFINE FLOW(s)
 @flow[4] = (" @suwind[1] \\
 < @inbound[1]| \\
 @supef[1] | \\
 @sufilter[1] | \\
 @sugain[2] | \\
 @suxwigb[2] \\
 & \\
 ");

DEFINE FLOW(s)
 @flow[5] = (" @suwind[1] \\
 < @inbound[1]| \\
 @supef[1] | \\
 @sufilter[1] | \\
 @sugain[2] \\
 > @outbound[3] \\
 & \\
 ");

RUN FLOW(s)
 system @flow[1];
 system 'echo', @flow[1];

 system @flow[2];
 system 'echo', @flow[2];

 system @flow[3];
 system 'echo', @flow[3];

 system @flow[4];
 system 'echo', @flow[4];

 system @flow[5];
 system 'echo', @flow[5];

Make_header_geometry.sh

#! /bin/sh
set -x
#Author:James Chatagnier
#Date: December 6, 2010
#Purpose: Generate appropriate headers before generating CMPs (see
make_CMP.sh)
offset is defined as sx-gx

DATA/$file DIRECTORY
SU_DATA='/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su'
FILE_NAME='1001_1100.rkgf_fk'

 sushw <$SU_DATA/$FILE_NAME.su \
 key=sx,gx,offset \
 a=0,450,450 \
 b=0,300,300 \
 c=300,300,0 \
 j=24,24,24 \
 >$SU_DATA/1001_1100.rkgf.fk.geom.su
Makecmp.sh

#! /bin/sh
set -x
Purpose: To generate CMP values in the headers
Headers must already have the correct geometry values inserted
for
the seismic experiment (See header_geom.sh for this)
We use the basic relation that

CMP = (sx+gx)/2

where sx is the shot location, and gx is the receiver
location.

We use suchw to calculate the CMP using offset and other key
words as
input.
value(key1) = (a + b * value(key2) + c * value(key3)) / d
can be rewritten as:

If we choose the first CMP to be equal to ,say, 101
then a = 304
a = (101 (first CMP number) + 51 (absolute value of
half the longest offset on the first shot gather))/2
Because d=2 we have to double the size to get a and make
our first CMP=101. You can choose other numbers to be the first
CMP.

value(cdp) =(304 +1 * value(sx) + 1 * value(gx)) /
2

Date: Oct. 25 2007
Juan Lorenzo

DATA/$file DIRECTORY
DATA_IN=/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su

DATA_OUT=/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su
 suchw <$DATA_IN/1001_1100.rkgf.fk.geom.su \
 key1=cdp \
 key2=sx \
 key3=gx \
 a=0 \
 b=1 \
 c=1 \
 d=2 \
 >$DATA_OUT/1001_1100.rkgf.fk.hd.su
Nmo_test.sh

#!/bin/sh
set -x
nmo_test.sh
Oct. 29, 2007
Program to test nmo's
several constant velocity moveouts are tested
starting at 600 m/s and ending at 1000 m/s
STEP 1: Data is sorted by cdp and offset
#STEP 1A: Data is windowed
STEP 2: DATA is moved out
STEP 3: data is filtered
STEP 4: data is gained
STEP 5: data is displayed
Author: Juan M. Lorenzo

set up working directories
SU_DIR='/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su'

this_file='1001_1100.rkgf.fk.hd'
counter=0
vel_start=100000
vel_last=200000
vel_inc=10000
first_cmp=18375
last_cmp=18375

for ((vel=$vel_start; vel<=$vel_last; vel=$vel+$vel_inc))

do

 echo $vel
 susort <$SU_DIR/$this_file.su cdp offset \
 |
 suwind key=cdp min=$first_cmp max=$last_cmp \
 | \
 sunmo vnmo=$vel \
 | \
sufilter f=0,3,400,600 \
| \

sugain agc=1 wagc=0.1 \
|
 suximage \
 \
 xbox=$[$counter*200] ybox=0 wbox=200 hbox=600 \
 title="$vel m/s" & \
 counter=$[$counter+1]
done
simple_stack.sh

#!/bin/sh
set -x

#Purpose: Sorts data by cdp and offset then stacks
#Author: James Chatagnier
#Date: December 7, 2010

SU_DIR='/home/jamec/LSU1_1999_TJHughes/seismics/data/1999/Z/su'
FILE_IN='1001_1100.rkgf.fk.hd'

susort < $SU_DIR/$FILE_IN.su \
cdp offset \
| sunmo \
 vnmo=110000,130000,150000,180000 \
 tnmo=0.0809,0.1525,0.3150,0.6000 \
| sustack \
| sugain agc=1 wagc=.2 \
| suximage title-‘Final Image’ clip=3

	Introduction
	Acquisition

	About the Data
	Processing
	Seismic Unix
	Converting .dat to .su
	Deleting Bad Traces
	Reversing Traces
	Gain and Bandpass Filtering
	Minimizing Ground Roll
	Whitening Spectrum
	Header Geometry
	Calculating CMP’s
	Stacking Velocities
	Stacking Final Image

	Conclusions
	References
	Appendix

