[image: image1.png]

Basic Notes for:

Reflection Seismology using Seismic Unix (John Stockwell), Linux and Perl

 (GEOL 4068)

Fall 2020(V2.0)
LSU

Baton Rouge
Juan M. Lorenzo
Contents

4Acknowledgements

5Introduction

5Why do we need to study linux?

5Why do we need OpenSource software?

5Where do I get ssh?

5Are you planning on doing any programming from home?

5Where do I get Xming?

5What do I do if I have a Macintosh computer?

6How to run Xming:

6Why do we need to know sh or Perl?

6Linux

6History of Linux

7Q. What is a shell?

7Q. What are the different shells?

7Q. Which one should I use?

7Directory Structure of the Linux operating system

12Seismic Unix

12Introduction

21Perl (Hoffman, 2001) “Practical Extraction and Report Language”

21Introduction to Perl

21Q. Why use Perl?

21When not to use Perl?

21Can I use Perl to make simple, visually interactive programs?

21Learning Perl on your own

22Basic components of Perl

22Input and Output

24Documentation in Perl

25Data Types

27Useful Operations

30Incorporating SeismicUnix programs into Perl

32MATLAB

32Create a matrix of numbers

32Sin function

32Exercise 1 Simple 2D plotting

33Exercise 2: Traveltime Equations

33Exercise 3: An ideal seismic wave signature—“the spike” -

34Exercise 4 Constant Phase and Linear Phase

34Exercise 2- Matlab

34% hyperbola

35Matlab code for exercise 4 – A study of the effects of constant phase and linear phase on a seismic wavelet

35CONSTANT PHASE SHIFTS

36Matlab code for exercise 4 – A study of the effects of constant phase and linear phase on a seismic wavelet

36Creating a shell script to log in automatically

Acknowledgements

These notes borrow from the Colorado School of Mines (Stockwell) for S*nix, Universities of Indiana and Buffalo for linux and the University of Florida for Matlab. Many students have also contributed to these notes: Class of 2008: Erin Walden, Kody Kramer, Erin Elliott, Andrew Harrison, Andrew Sampson, Ana Felix, JohnD’Aquin, Russell Crouch, Michael Massengale, and David Smolkin; Chang Liu (2013).
Introduction
Why do we need to study linux?
Creative professional geophysicist and students are able to explore new ideas without constraints of “black-box” software.
Why do we need OpenSource software?

Open source products are advantageous because they can be verified independently by anyone. Reproducibility is a core tenet of the scientific method. OpenSource software replicates a scientific procedure.
Where do I get ssh?
Link to ssh: http://www.chiark.greenend.org.uk/~sgtatham/putty/
Install with the default options.

Where do I get Filezilla client?
Link to Filezilla client: https://filezilla-project.org/(for PC, Mac and Linux)
Are you planning on working remotely ?
Run PuTTY. Create a new connection, e.g., named ‘lab’.

Enter in the “Host Name” tab : Geol-subsurface.lsu.edu
Save your session: “lab”

Open

Login as: your PAWS id.
Your password is your PAWS password. The password is case-sensitive. Save changes to your profile.

You can now connect to the Geol-subsurface.lsu.edu server using PuTTY.

Where do I get Xming?
Xming is the leading, free X Windows Server for Microsoft Windows that will allow you to work with the linux server throughout this semester.
http://www.straightrunning.com/XmingNotes/
Go ahead and download: Xming, and Xming-fonts (Public Domain)
Install both packages using only default answers to questions.

What do I do if I have a Macintosh computer?

For Mac users connecting to Geol-subsurface.lsu.edu, all you need to do is going to the "Launch pad" on your desktop, open Utilities folder and double click "Terminal". A terminal window will open. Type: ssh -Y yourname@Geol-subsurface.lsu.edu. Then you are ready to go. (Courtesy of Chang Liu, fall 2013)

Also, see: https://www.ssh.com/ssh/putty/mac/
1) Download Cyberduck from internet (for Mac).

2) Open Cyberduck, click open connection.
3) Choose SFTP (Ssh File Transfer Protocol) option in the drop down window on the very top.

4) Type "Geol-subsurface.lsu.edu" in the "Server"

5) Use your PAWS login name and password.

6) After putting all the information, click Connect. And you will see all the files

7) Simply, Drag the file(s) into the folder you want it to be.
How to run Xming:
Making sure that you’re still connected in SSH (via PuTTY), run XLaunch to configure Xming When correctly configured, Xming will receive and display images send by the server: Geol-subsurface.lsu.edu.
Choose one window (default is fine), then make sure that “Start no client” is checked. Click Next>Next>Finish.
Logout of SSH (PuTTY) window (File>Disconnect) and then reconnect by selecting the “lab” profile that you created and saved previously.

If you are having problems connecting, open the “lab” session you saved previously in PuTTY
Click: SSH-> X11-> “Enable X11 Forwarding” -> Open
Make sure to save your session for the next time.

Everything is working fine, if you can enter “gedit” and get a window to appear.

Why do we need to know sh or Perl?
Shells are the basic sets of instructions for handling the operating system and Perl is a mature, widespread computer language ideal for file manipulation. Perl can serve as a simple “glue” to make diverse pieces of software talk to each other. Python scripts can also provide a “glue”.
Linux
The single-most advantage of linux is that because the code is freely available, many people around the world participate continuously in its improvement. I view Linux as a communal, philanthropic exercise which takes advantage of the cooperative nature of our species. Linux can also simply be thought of as a collection of independent computer instructions that allow you to use the hardware pieces in your computer (keyboard, hard drive, internet card, etc.).
Many of you are familiar with typical point-and-click programs. In class in contrast we tend to send commands to the computer via text written on the command line. If well thought out, visually identifiable commands (i.e., point-and-click) are friendlier but slower to use, especially tedious to write and computationally less efficient. However, you will see that as part of linux there is a windowing environment (in our case called GNOME) that allows you to indeed “point-and-click” WYSIWYG (“What-you-see-is-what-you-get”)/GUI(“Graphical-user-interface”) in a way that is equivalent to typing in text commands. You may have already heard also of KDE as another popular windowing systems for users of linux.

History of Linux

Click here for a more comprehensive history of the subject by Ragib Hasan at UIUC.
Linux was developed (for free) by Linus Torvald possibly inspired by at least the GNU project (“GNU’s not Unix”) , a software movement to provide free and quality software
LINKS to sites that have important shell instructions:
Important Instructions in sh
following: from Linux Shells (Albing et al., 2007)
Q. What is a shell?
A shell is a convenient collection of command-line-instructions (actual programs), written in a low-level language such as C, that allow the user to interact with files and the hardware and files. Shells have been around since the start of the unix-type operating systems and have the advantage that they interchangeable among different linux operating systems. Although the instructions may have to be recompiled for each machine the syntax remains constant and once learnt will last a career.
Example, ls.

ls stands for: “list the contents of this directory”
Q. What are the different shells?

sh: the original “bourne-shell”

csh: the“C-shell”

The csh improves upon the sh because it introduces convenient programming tools inherited from C
ksh: the “k-shell”

The commercial nature of this shell limited the growth of its popularity from the start.
bash: the “bourne-again-shell”

The bash shell is ubiquitous among any linux-type operating systems you might encounter. The bash shell inherits the advantages and experiences of all prior shells.

Q. Which one should I use?

For this class the default is: bash
Directory Structure of the Linux operating system
In any operating system, linux programs and user directories are stored in predictable locations:

/ (Highest tier/directory in the file structure))
home (lower-tier directory)
Your_login_id (subdirectory)

Logging in to your account

Type your login id, followed by your password

Running a Remote Session on "Geol-subsurface.lsu.edu" and forwarding it to your local machine CONTENTS
· ssh –X yourname@Geol-subsurface.lsu.edu This command will redirect images to the machine you are sitting at.

[image: image5.png]local machine remote machine
Geol-subsurface.lsu.edu

· answer "yes" to the question involving "authenticity". You should only see this question the first time you log on from each machine.

· You should see a "prompt" such as

2 yourloginname@Geol-Subsurface: %

· ls -l (see what's in your directory)

Changing System permissions and the stability of Linux

Every file and directory in linux has assigned codes which dictate the degree of authority by each user of the computer to alter each file. There are four types of user status on linux. First we have the overall supreme administrator known as “root” and who can do anything to any file on the system. Next, comes the specific original owner/user of each file. All users can belong to one or several named “groups” of users. Finally, anyone who is not specified as belonging to your group or is not the supreme administrator is considered belong to the outside “world”, or all other internet users on the planet (including hackers). Within each of the status levels: owner, group, world, binary codes or their letter equivalents may be set to indicate whether a file may be only browsed (“read”), modified (“write”), and/or executed as a program (“executable”). Note that it is the files themselves that carry this important information with them. The file permissions are consulted first to determine whether an individual user has authority to manipulate the file in any way.

The purpose of this complex permission scheme is to provide an infinite variety of protection schemes for the file systems but yet maintain an unsinkable file system. In theory, and for much of practice, an individual user will not be able to shut down the system; they will only be able to do damage to themselves and not the files or others.

System permissions belonging to a file or directory can only be changed by those users for whom files have had the proper permissions already assigned. Initially it is the user “root” who sets all the first set of permissions for files and directories when a user is given a space to work on the system. From the first logon, the user has control of their assigned set of files and directories.

If you want a file containing Perl code to become executable in the system the creator of the file is required to change the appropriate permission setting for that file. Following are the equivalent numeric codes for the different types of permissions:

Read only - 4 Write only – 2 Execute only - 1

Read and write – 6 Write and execute – 3 Read, write and execute – 7 (add all three numbers together)

For example:

% ls –l

My_perl_file r _ _ r _ _ r _ _

There are three spaces to explain the type access by user:

 (“read” access), group (nothing/0) and everyone-else (dash/0), respectively. The next three spaces show the same for the group to which the user belongs and the final three for all other users.

In order to change “permissions” to allow the file to run as a program enter the following:

chmod u+x

which only adds (“+”) the setting that gives only the owner (“u”) executing privileges

Or, equivalently

chmod 600
In the numeric form the last two zeros mean that “group” and “others” privileges are nill. As you can see the numeric form can alter permissions for all the three types of linux users at once.

Here is a summary list of options used for setting file permissions and understanding file types on the linux system

	Abbreviation of user status
	Stands for …
	Abbreviation of file permission
	Stands for …

	u
	user
	r
	read

	g
	group
	w
	write

	o
	others
	x
	execute

	a
	all
	
	

	+
	add
	
	

	-
	remove
	
	

	d
	directory
	
	

	l
	link
	
	

Examples:

	Letters symbols
	Numerical symbols
	
	
	

	chmod u+rwx
	chmod 700
	
	
	

	chmod u+rwx

chmod g+rw

chmod o+x

	chmod 761
	
	
	

Q. Can I do any damage to another person’s files?
Yes, if the files belong to you. You can tell if you own the files by reading the second column from the ls –l instruction, which has the general form

drwxr-xr-x “number of links” “your login name” “your group name” filesize(bytes) date etc.
Copy a everything a directory and all its contents to your home directory
% cd (make sure you are in your home directory)

% cp –R /home/refseis17/ ./
% cp –R /home/refseis17/ ./
 use Control D or TAB to complete your file name
Copying files across the web securely using sftp

From your local machine type

%sftp loginname@remotemachinename

Once you are connected to the remote machine, the following basic instructions will get you going:
help

get
download a file over to the directory on the local machine

put
upload a file to the remote machine

ls
list CONTENTS of the remote machine

lls
list directory CONTENTS of the local machine

pwd
working directory name of the remote machine

lpwd
working directory name of the local machine
(you can also type “help” once you are inside the remote machine)
Deleting files
% rm filename

Finding files
% locate filename
Renaming files
% mv filename
A free linux shell scripting tutorial:

http://www.freeos.com/guides/lsst/
	Example 1

The text ‘hello’ is assigned to the variable named output The value of the variable is expressed as $output The variable name can be any word.
	Example 2

The number 1 is assigned to the variable named value. The value of the variable is expressed as $value

$1 is assinged value 2 from the command line (outside the shell script). This number is the first value on the command line after the prog name

Arithmetic calculations are carried out by a shell program called expr.

	%prog_name
	%prog_name 2

	#! /bin/sh

output=’hello’

echo $output
	#!/bin/sh
echo "Enter the two numbers to be added:"
read n1
read n2
answer=$(($n1+$n2))
echo $answer

Plotting your results
% gimp

Experiment capturing a screen dump, opening it and then printing it.

Repetitive tasks
for action in ‘came.’ ‘saw.’ ‘conquered.’

do

 echo 'I ' $action

done

The variable called action has three potential values. Each value is a word that is sent to the screen using echo within the do …done set of instructions. The $ sign in front of action assigns its value to be sent to the screen each time following the word I.

Creating an archive of directories and their contents
When it comes to collating all your directories and their content into a single, manageable file that can keep a record of the directory structure use the useful instruction called tar as follows:

%tar –czvf tarred_file_name directory_to_archive

A file called tarred_file_name is created. Usually it is best to give your tarred file a *.tar ending so you can automatically know what type of file it is in future. In order to open up and generate all directory tree with all its leaves (which are the files contained within) use the following command:

% tar –xzvf tarred_file_name

If you choose to get ONLY a LISTING of the contents of a tarred file without rebuilding the directory tree and all its contents you can instead use the following command:

% tar –tzvf tarred_file_name >output_file or if you want to output the listing to the screen use:

% tar –tzvf tarred_file_name

Concatenating files

When you have one files you would like to append to another use the

cat file1 file2 > file3

Seismic Unix
Introduction

Examine a Seismic Data Set
% suxedit SH_geom_2s.su
· g 1
(this graphs the data)

Fourier Transform
>f1

(this graphs the strength of the frequency content at trace #1)

>f24
(this graphs the strength of the frequency content at trace #24)

> h

(provides help to the user)

All data traces have a "header" that consists of descriptive variables, e.g. length of the data set, date it was collected etc.

Display
% suximage < SH_geom_2s.su (The < or redirect symbol sends the data set file into this program)

Bandpass Filtering
% sufilter <SH_geom_2s.su f=0,6,300,400 | suximage
 (The | symbol or "pipe" streams the output of one program into the mouth of the other program)

Exercise
Put all the above instructions into a script called "my_first.sh". Confirm that this file runs correctly
Notch Filtering

% sufilter < SH_geom_2s.su f=3,6,40,50,60,70,80,180,200 amps=0.,1.,0.5,0,0.5,1.,1.,0
Notes: Verify your filter worked. Run suxedit and plot out the frequency spectrum to examine whether a notch filter has been applied.

Application: To remove 50-60 Hz electronic noise in data

Automatic gain control
In order to adjust for changes in signal strength in time along individual traces apply the following:

% sugain < SH_geom_2s.su agc=1 wagc=0.05 | suxwigb title="AGC=1 WAGC=0.05s"

% sugain < SH_geom_2s.su agc=1 wagc=0.01 | suximage title="AGC=1 WAGC=0.01s"
The "clip" value that appears is the amplitude number above which all your traces are nulled out, i.e. they are assigned a white value, i.e. they are lumped into a common meaningless value. As a test, why don't you run the same instructions above, but this time include a clip command, say clip=1 and start varying the value of the clip by orders of magnitude. For example:

%sugain < SH_geom_2s.su agc=1 wagc=0.01 | suximage title="AGC=1 WAGC=0.01s" clip=1

%sugain < SH_geom_2s.su agc=1 wagc=0.01 | suximage title="AGC=1 WAGC=0.01s" clip=10

%sugain < SH_geom_2s.su agc=1 wagc=0.01 | suximage title="AGC=1 WAGC=0.01s" clip=100

Exercise 2

Create a script that ….

(1). reads a file SH_geom_2s su, (2) removes frequency below 120 Hz, (3) applies automatic gain control to compensate for geometric spreading and (4) plots it to the screen (5) hand in a hardcopy or e-mail me a *.gif file by the next time we meet..

 Iterative tests for filters

Create an iterative set of instructions that will allow you to test the data set for the best set of filters. The ground roll is in the lower frequency range (~<= 80Hz). Try at least the following four filter sets:

3,6,20,30
20,30, 60,70
70,80,300,400
80,120,500,600

for filter_values in $filter1 $filter2 $filter3 $filter4

do

 sufilter < SH_geom_2s.su f=$filter_values amps=0,1,1,0 | sugain wagc=0.1 a

gc=1 |suximage

 echo 'hello' $filter_values

done
For this exercise you are expected to hand in two scripts and one image. The first script will show the interactive tests you conducted for different filters. The second script will show the final set of filters that best remove the ground roll but keep the rest of the data. An image of the best-filtered data set with the ground-roll minimized is what I expect to be handed in by the next lab. Make sure you understand the accompanying linux script exercise.
Killing bad traces
sukill <SH_geom_2s.su min=16 count=2 >SH_geom_2s_killed.su
min in the number of the first trace to kill and count is the number of traces starting with min that will be deleted.

Compare the same file before and after traces 16, 17 and 18 have been removed, e.g.

suximage < SH_geom_2s.su

suximage < SH_geom_2s _killed.su
Reordering traces
susort < SH_geom_2s.su –tracf |suximage

tracf is the header value that is used to reorder the traces. In this case tracf is the trace number. The negative sign implies that the reordered file will have the traces ordered according to the decreasing value of tracf. So if tracf = 1,2 ,3…. 24 in the input file, tracf=24,23,22,21,20 in the output file

Here we reverse the order of the traces according to their sequential trace number in the file (tracf) and traces 1 through 24 will be plotted in reverse order, i.e. 24 through 1.

Cutting out a window of data
If only part of the data set needs to be used, for example only the first half second we can use suwind

suwind <1001.su key=tracf min=1 max=24 tmin=0 tmax=0.5 |suximage

In this case we have selecting all traces who have values for tracf between 1 and 24 and all samples between the time 0 s and half a second.

An example that shows how to kill traces, reorder and cut a window of data from a certain data set

While logged into your Geol-subsurface account, go to directory ~/refseis17 and copy over to your local directory the following file: LSU1_1999_TJHughes.tz
Untar this file.
The scripts that follow show the implementation of sukill, susort and suwind
Examine the file Xamine.sh from the immediately previous section. Identify susort, suwind, sukill. These S*nix programs are used to prepare a pseudo-walkaway shotpoint gather for viewing.

Give me the reasons you think why susort was used, why suwind was used and why sukill was used? Please give me one reason for each. You will need to image the seismic data to see how the files look BEFORE they are affected by suwind, susort, and sukill as well as AFTER. The differences should allow you to see why each program was used and for which reasons.. This is a dropdead date and time with no extensions. You can answer in text in three to four sentences only. But, you will have to view the data and perform sukill, susort and suwind. You do not have to send me any images you created. The reasons you give will show that you understand what occurred.

How to locate the meaning of each header word
If you want to know what tracf means then type:

% sukeyword tracf

The output will appear on the screen explaining that tracf is the trace number within the field record

How to change a header word value
Header values are changed according the following formula:

Header value = a + b * (i/j) + c(i/j)

For the following example a,b,c,I and j can be seen to represent:

a
first value of each group of traces

b
value of increment between traces in a shot gather

c
increment in value between the first traces of adjacent shot gathers

i
trace number within the whole file ,e.g. 0,1,2,3,4,5,6,7,8 Note that I starts at 0. We do not need to set I in the following example.

j
number of traces to jump between shots

If b or c are equal to 0, then their products with (i/j) are also equal to 0 and there is no change to the patterc of the header value within adjacent shot gathers.

For example:

key=offset (shot-receiver distance)

key=sx (x co-ordinate of shot position)

key=gx (x co-ordinate of geophone position)

X is increasing and positive

[image: image6.png]08

06

04

02

15

25

35

15

 sx=0
 gx= 33 36 39 SHOT #1

 offset= 33 36 39

 sx=3
 gx= 36 39 42
 SHOT #2

 offset= 33 36 39

 sx=6 gx= 39 42 45
 SHOT #3

 offset= 33 36 39

sushw < filename \

key=sx,offset,gx,fldr,tracf
\

 a=0,33,33,1001,1

\ # first value of each group of traces

 b=0,3,3,0,1

\ # increment between traces in a shot gather

 c=3,0,3,0,0

\ # increment between first traces of each shot

 j=3,3,3,3,3

\ # number of traces to jump between shots

 >filename_out

We can simplify the above into several steps:

Step 1: set the sx field of the first 3 traces to 0, the second set of 3 traces to 3, the third set of 3 traces to 6; i.e. the shot stays at the same place for whole shot gather and only increments when a new shot is taken (i.e. every 3 traces)

sushw < filename

\

key=sx a=0 b=0 c=3 j=3 …

Step 2: set the offset field of the first shot (first set of 3 traces) to 33,36,39 , the second shot (next set of 3 traces) to 33,36,39, and thelast shot (third set of 3 traces) to 33,36,39.

…| sushw

\

key=offset a=33 b=3 c=0 j=3 …

Step 3: set the X oordinate of the geophone position to 33, 36, 39 for the first shot; to 36,39,42 for the second shot (next 3 traces), and to 39,42,45 for the last shot (final 3 traces)

…| sushw

\

key=gx a=33 b=3 c=3 j=3 …

In a full script he above 3 steps together can look like:

#!/bin/sh

set x

filename_in=’1000.su’

filename_out=’1000_geom.su’

sushw <$filename_in

\

key=sx a=0 b=0 c=3 j=3
\

| sushw

\

key=offset a=33 b=3 c=0 j=3 \

| sushw

\

key=gx a=33 b=3 c=3 j=3
\

>$filename_out

or we can make a single call to sushw and place the variables together, in its briefest form:

#!/bin/sh

set -x

filename_in=’1000.su’

filename_out=’1000_geom.su’

sushw <$filename_in

\

 a=0,33,33,1001,1

\

 b=0,3,3,0,1

\

 c=3,0,3,0,0

\

 j=3,3,3,3,3

\

>$filename_out

How to calculate CMP/CDP in header

suchw imilar to sushw but where we use the header values to do the math:

value of key1 = (a + b* value of key2 + c * value of key3)/d

 We use the formula that CMP = location of source + (source-receiver offset)/2

suchw < filename_in
\ #input file name
 key1= cdp

\ # output header word

key2= sx

\ # first input header word – - source x-coordinate

key3= offset
\ #second input header word

a=202

\ # first CDP/CMP number * 2

b=2

\ # 2*CMP increment , e.g., 101, 102, 103

c=1

\ # multiplicand for key3
d=2

\ # divisor of all

< filename_out

An example for making CMP values in headers is available from lgc10 at

/home/refseis17/shell_exs/makecmp.sh
How to fix a data set with a variable time delay or a data set that has false time breaks or how to cross-correlate two traces.

Cross correlation describes the similarity between two time series. For us a trace consists of a series of amplitude values at regular intervals of time or a time series. Mathematically, cross-correlation is like convolution, but where none of the traces are reversed prior to the steps involving shifting, multiplication and addition (See lecture PowerPoint Presentation entitled “XCor” for cross-correlation and the PowerPoint presentation entitled “CMP” for convolution, both hyperlinked fromthe main syllabus pertaining to this class).

Let’s start by assuming that the geology does not significantly change from between two adjacent shots. Then, if for one shot gather, the recording time accidentally starts at a different time with respeect to the shot going off to that of another shot gather the true delay must be reset. Why?

Well, whereas delay keyword in the headers will have the same value the data will be at the wrong time. We must change the delay header value so that the data should appear at the correct time.

Once the data is corrected for this wrong delay value then we must make all the shot gathers have the same length in time starting at tmin=0 (shot time) You will find however, that before you can do that the data you have corrected to perhaps a later time now has missing data. What to do???

A worst-case scenario is that the seismograph started recording very late after the shot went off and that you have irretrievably lost data. What to do???
To see how this might be done copy to your directory, then modify accordingly and run the following script that is located in /home/refseis17/shell_exs/change_delay.sh.

A cross-correlation between traces can be used to estimate the differences in the times between two identical events. You can see how this might be done by looking at /home/refseis17/shell_exs/study_CORRELATION

How to carry out Normal Moveout and Stacking

I recommend that once you have populated your header values for offset and CDP you should sort the data before sending it to NMO.

susort <file_in >sorted_file_out cdp offset

A brute stack can be obtained by first trying a constant-velocity stack, say at 1500 m/s.

You can try various constant velocity stacks at different constant velocities.

sunmo < sorted_file_in vnmo=1500 |sustack cdp |suximage clip=1

After you obtain an initial brute stack you are ready to start refining many of your processing parameters. It is during this stage that your sunmo can read the results of additional velocity analyses. More on that later…

AN example of a script containing these instructions, among others, is available from lgc10 at

/home/refseis17/shell_exs/study_NMO_STACK.sh

Perl (Hoffman, 2001) “Practical Extraction and Report Language”

Introduction to Perl

Q. Why use Perl?

There are certainly “better” ways to write code, but here are my reasons to use perl:

(1) It costs nothing, is mature and widely available
(2) Testing is quick; “on-the-fly”. Perl is an interpreted language which means that code is translated into the machine language while it is running one line at a time so that places where there are errors are easy to locate.

(3) Perl can easily incorporate shell programming scripts. Perl can be used as a “glue” to organize a computational workplace. Perl can be used to communicate between different modular command-line Open Source programs.

(4) Perl can be used for more complicated programs that require setting up functions or “sub-routines” that help keep complicated programs modular and simple

(5) Handling text files and their content is carried out more easily than with other programs

When not to use Perl?

When you want Perl to perform intensive numerical calculations.
When you know of an easier way that will save you time and frustration.
Can I use Perl to make simple, visually interactive programs?

Yes, even using well-known libraries such as GTK, Qt, and of course the old, classsical Tk interface.
Learning Perl on your own
A great place to start is to use the online tutorials in linux. Use google to find a Perl tutorial, e.g.: http://www.perl.com/pub/2000/10/begperl1.html
You can also consider subscribing to: http://www.perlmonks.org for free help and Perl camaraderie.

Also, use Perl itself that comes with documentation. Check this out:

% man perl

………….

 perl Perl overview (this section)

 perlintro Perl introduction for beginners

 perltoc Perl documentation table of contents

 Tutorials

 perlreftut Perl references short introduction

 perldsc Perl data structures intro

 perllol Perl data structures: arrays of arrays

 perlrequick Perl regular expressions quick start

 perlretut Perl regular expressions tutorial

 perlboot Perl OO tutorial for beginners

 perltoot Perl OO tutorial, part 1 ………

 perltooc Perl OO tutorial, part 2

 perlbot Perl OO tricks and examples

 perlstyle Perl style guide
Notes: Use the up and down arrow keys to move to the line you want to select
 Control C will get you out of any program

Basic components of Perl

Input and Output

Printing ‘Hello World’
In order to give you some courage to start working with this new language, especially if you have not worked with one too extensively before, let’s consider writing one that is classical across most beginning tutorials and that provides a stimulating output to the terminal.
#!/bin/perl
#This is my first program in perl
print (“Hello World\n\n”);

In the above example there are at least five things to note.

(1) The first line denotes the location of the perl binary

(2) From now on all items that are output to the screen will be included in parentheses and double inverted commas. Double-inverted commas permit Perl to interpret the different items. For example some items are read as text and others as “special characters” when needed. (Try out single commas just to see what would happen). If you want to null the value of a special character put a “\” before it. For example “\\n” makes “\n” come out just like the characters you see. (Try it out).

(3) the “\n” is a shorthand code that means include a new line when the rest of the text is written out. There is a new line before the start of writing and there are two new lines after the start of writing.

(4) All lines except the first and the line commented out end with a “;” denoting the end of an instruction. Omission of the “;” is a very common mistake that we all make.
(5) The symbol “#”on the second line means that these words are informational for the reader and will not be considered by Perl to be a meaningful instruction.
Reading from and Writing to a file

If you want to read and write data to hard drive you must first tell the system you are ready to access a part of the hard drive. This is done by opening a “FILEHANDLE” or a file address. You must also provide a name. The FILEHANDLE should be closed when you are done reading or writing to the file.

Here is an example of opening a file:

#!/bin/perl

open (FILE, “filename”) || die (“can’t open this file $!”);

$i=0;

while ($read = <FILE>) {

$line[$i] = $read;

$i=$i + 1;

}

$imax = $i;
close (FILE);

for ($i=0;$i<$imax;$i=$i+1) {

print (“$line[$i]”);

}
“$!” is a special operator indicating a system error has occurred.

“<>” is the line-reading operator which continues by itself until the end of the file is encountered

Line reading continues as long as the value of the “while” statement is true, i.e. as long as the content of the parentheses remains TRUE (=1).
Reading is quite straight forward except for the following:

(1) remember that lines of data may have invisible characters that you may want to remove

(2) you can not read a file unless you know its internal makeup….
Here is an example of writing to a file:

#!/bin/perl
$imax=3;

for ($i=0;$i<$imax;$i=$i+1) {

$line[$i] = $i;

print (“$line[$i]”);

}
open (FILE, “> filename”) || die (can’t open this file $!”);

for ($i=1; $i<3; $i=$i+1) {

print OUT $line[$i]

 }

close (FILE);

Note that the only important difference between reading and writing is that we have a redirect sign “>” before the filename.

Documentation in Perl

There is another way of documenting perl programs that can later be used to automatically generate a formatted description of the program to newcomers. We call this using ‘perlpod’, which stands for perl’s plain old documentation format, an “html-like” way of embedding documentation within a perl script.
For example, here is a version of the same program above with a more sophisticated and professional documented body. Make sure you leave a space before the first line that starts with “=”
#! /bin/perl
=pod

=head1 NAME

 My first program

=head1 SYNOPSIS

 perl Hello_World2.pl

 This is my first program in perl

=head1 DESCRIPTION

 Writes a few words to the in terminal

=head1 ARGUMENTS

 None

=cut

 print("Hello World\n\n");

=pod

=head1 AUTHOR

 I am the author of this simple program

=head1 DATE

 Sept-16-2013

=head2 TODO

 also include lists of items

=cut

=pod

=head3 NOTES

 Although this is just my first program, I can use it as a template with

 which to generate documentation in other programs that I write

=cut

print (“Hello World\n\n”);

Are there any advantges to perlpod ?

 (…that is, other than keeping notes on HOW the program works for the next user?)
Yes, there are some advantages to using perlpod that outweigh the extra time and thought required to place the comments inside your program. One advantage is that it is relatively easy to convert your documentation (just the documentation and not the rest of the program) into a different format, such as PDF, or MSWord.
Data Types

Just as we saw in dealing with shell variables we distinguish between the value stored on a hard drive and the name associated with that number.

A perl variable is a place to store the value, which is called the literal.

For example:

#!/bin/perl
#This is my another program in perl

$number = 2;

$output_text = (“Hello world”);
Print (“\n$output_text \n\n $number”);

When writing out text, note that text consists of individual characters strung together in a line, including minus signs, plus signs, spaces, tabs, end-of-line-characters, etc. A string of characters is just that, a string. In the example above we assign (“Hello world”) to the variable $output_text.

Lists of Variables (data) or Arrays (vaiable)
If you want to include various lines of texts it might be cleaner to break up the text into different segments. In order to handle this we can create a “list” of lines of text. The list consists of many scalar literals which are assigned to ordered portions of the array.
#!/bin/perl
#This is my third program in perl

$output_text[0] = (“Hello world\n”);
$output_text[1] = (“I want to live\n”);

$output_text[2] = (“I want to flourish\n”);

Print (“\n@output_text \n”);

 List variables carry the “@” sign at the beginning of their name and will print out their whole content, as in the example above. The list is ordered starting at 0 and not at 1.

Yes, you could also write the list with a different syntax:

#!/bin/perl
#This is my third program in perl

@output_text = (‘Hello world\n’,’I want to live’,’I want to flourish’);

A list of variables is also known as an array and is identified with the @ symbol:
#!/bin/perl -w

#PURPOSE: describe perl arrays

@output_text = (“ Four score\n”,”and seven years ago\n”,”our fathers landed\n”);

print(“@output_text[2]\n”);

print(“$output_text[2]\n”);

print(“The number of values in the array is: [@output_text[$#output_text] +1]\n”)
print(“The number of values in the array is: scalar(@output_text)\n\n”);
Is there a difference between the two outputs?

There are a couple special arrays which will need later when we write functions and perl programs that can interact with the user, that is they require input from the user such as a number or a file name on the command line : e.g.,
%perl sum.pl 1 2
The first variable is called @ARGV and keeps track of the order of the values that follow the name of the program above (e.g., @ARGV[0], and @ARGV[1]).

Another special variable @_ is needed to pass arrays to a subroutine (a sub-program)

Scalars

Scalars are single-value data types. That is, only one value is assigned to that variable and the value can be a string or a number. Scalars are indicated by a “$” sign at the beginning of the variable.

There is one special variable in perl that is useful to know. Commonly you will want to know the number of values your array. The length of your array or the number of values in your array would be equal to the largest index plus 1. For this purpose there is a special scalar variable in perl you can use. This special variable has a literal value equal to the last index in the array:
#!/bin/perl -w

#PURPOSE: estimate array length
@output_text = (" Four score","and"," seven years ago","our fathers landed");

$array_size = $#output_text + 1;

print("The number of values in the array is $array_size\n");
print("The last of value stored in the array is:\n”);

print(“\t\t@output_text[$#output_text]\n");
Note have inadvertently we have introduced, albeit briefly, how to carry out some simple arithmetic from within perl.

Hashes
Hashes represent pairs of values and their names or keys. Because a name can be a useful mnemonic for the associated value hashes are very commonly employed to more easily keep track of lists of parameters. For example, the following could be a hash for parameters in a seismic data set:
%seismic_data = ('sample_interval_s', 0.001, 'number_of_samples', 1001, 'first_time_s', 0);
The syntax for retrieval of values from a hash is variable but there is one form that is preferred because it is easier to read, e.g.,
print (“$seismic_data {‘sample_interval_s’}\n\n”);
Useful Operations
For-loop/Do-loop in perl

Do-loops (herein “for-loop”) are a term inherited from Fortran (and bash). In Perl there is a simple syntax to handle repetitive tasks that is very similar to C and Fortran, and Matlab. After all, computers ARE supposed to be used for doing repetitive tasks very fast. Here is how we do a loop:

#!usr/bin/perl

NAME:

PURPOSE: To show off for loops

$max = 10;

for ($i=0; $i<=$max; $i++) {

 $output_number_array[$i] = $i+1;

}

for ($i=0; $i<=$max; $i++) {

 print ("For index = $i \t value = \t $output_number_array[$i]\n ");

}

Inside the parentheses, after the “for”, there are three instructions. The first instruction “$i=0” provides the START of the loop. That is, the first instruction is the first thing that is carried out in the loop. Remember this!

The second time the loop is run, the third instruction is carried out, i.e. the $i value is updated by adding 1 to the previous value. At that point the second instruction must be met for the calculations to enter the loop again. If the second instruction is not me then the loop is exited and the “$i” retains its previous value from the end of the last loop. To be safe, you can examine the value of $i when the loop is exited.

Note that we can work the index in reverse as well and that the values of “$i” can increment by more than just “1” each time.
Perl operators

Various symbols exist in perl that are very similar to operators in other programming languages. Operators can be of several types depending on whether you are dealing with NUMBERS or CHARACTER STRINGS.
 Arithmetic

 + addition

 - subtraction

 * multiplication

 / division

 Numeric comparison

 == equality

 != inequality

 < less than

 > greater than

 <= less than or equal

 >= greater than or equal

 String comparison

 eq equality

 ne inequality

 lt less than

 gt greater than

 le less than or equal

 ge greater than or equal

Boolean logic

 && (and)

and (also and)

 or (or)

 ! (not)

Not (also not)

Miscellaneous

 = assignment

 . string concatenation

 x string multiplication

 .. range operator (creates a list of numbers)

 Many operators can be combined with a "=" as follows:

 $a += 1; # same as $a = $a + 1

 $a -= 1; # same as $a = $a - 1

 $a .= "\n"; # same as $a = $a . "\n";

Conditional if

An if statement allows perl to pass judgement on two variables. If the judgement has a TRUE (1) outcome then the instructions inside the curly braces are carried out, otherwise (FALSE ; =0) the perl language jumps to the first line after the “If” statement.

An “if statement” in its shortest version looks as follows:

#!/bin/perl
$value[1] = 1.1;

$value[2] = 1.0;

if ($value[1] >= $value[2]) {

 print (“\You have entered the first set of instructions\n”);

}

else {

 print (“\nYou have entered the second set of instructions\n”);

}

How to execute System commands in Perl
All that you have learnt prior to perl regarding the linux OS and shell can still be used within perl. Say, for example you wish to generate the following working set of directories:

/home/loginID

/data /progs /images

/jpg /tiff

#!/bin/perl
$HOME = (“/login/loginID”);

$DATA = $HOME

print(“\nMaking directories @directory[1] \n”);

system (“

 \\

 mkdir –p
@directory[1]
 \\

“);

Incorporating SeismicUnix programs into Perl
Example 1
The following script incorporates suplane and sufilt into a perl document:

We also use a “for loop” to evaluate a range of possible filtering parameters. We maintain a 100 % open-pass width of 30 Hz, a decay of 3dB/octave (i.e. doubling of the base frequency) and a doubling of the second filter value as in what follows:

f=3,6,36,72
f=6,12,42,84 f=12,24,54,108 f=24,48,78,156

Note that (1) we are doubling the second value in each list of filter parameters: 6,12,24,48; (2) the gap (Hz) between the second and third values is kept at 30 Hz.

#!usr/bin/perl

NAME: filter_test.pl

PURPOSE: To test a variety of bandpass filters

 $max_number_ofcases = 4;

=pod

=head3 RULES of OPERATION

 $f1 = 3 ;

 $f2 = $f1 * 2;

 $f3 = $f2 + 30;

 $f4 = $f3 * 2;

=cut

=pod

 Now we change the f values

=cut

for ($case_number = 1, $f1=3;

 $case_number <= $max_number_ofcases;

 $case_number++,$f1=$f1*2) {

 $f2 = $f1 * 2;

 $f3 = $f2 + 30;

 $f4 = $f3 * 2;

 $filter_parameter_array[$case_number] = ("$f1,$f2,$f3,$f4");

 print("This is case number $case_number\n");

 print("$filter_parameter_array[$case_number]\n\n");

}

=pod

 Now we go ahead and apply our results

=cut

$instructions = ("suplane | sufilter

\\

 f=$filter_parameter_array[1] \\

 |suximage & ");

system($instructions);

print($instructions);

Example 2:
Xamine.pl is located in ~/LSU1_1999_TJHughes/seismics/pl/1999/Z, sostart by copying the directory ~/LSU1_1999_TJHughes and all of its contents (use “cp –r”).
Project_Variables.pm will have to be modified to agree with the system path to your personal directories.

Xamine.pl demonstrates both the traditional as well as the object-oriented mode of incorporating seismic unix programs into Perl scripts.

The required file (sugain.pm) is a Perl package which is written in an object-oriented version of Perl and ‘pm’ indicates a package, or collection of subroutines under a common program name, i.e., “sugain.pm”.
Each subroutine can be called to set one or more parameters at a time for the gain functions. There are several advantages to hiding all these options inside subroutines. First of all, any program can be tailored more to the particular needs of the user. The user can be made to know less about what the syntax should be, less about memorizing the parameter names and more about performing the analysis.

For example, (a) the parameter names can be changed to suit the user into a term that is more meaningful geophysically and more self-explanatory

(b) package name can also be changed when a new version (or instance) is used inside a main perl program

(c) The user is NOT REQUIRED to use all the parameters. Parameters that are not needed do not need to be called. In the seismic unix family of programs all the parameters have set defaults which the user can not see but can read about in the manual. As written now, the default values can be changed by the user inside the package.
(d) if there are any subroutines that bear a similarity in their behavior to other subroutines the common behavior can be factored out and shared among the packages. Of course this requires more observant use of the programming language and more planning ahead of what he different subroutines do, but this is not too hard to do with Seismic Unix programs because they are written to be independent of each other for the most part and so do not share a lot of functionality.
Example 3

Modify Xamine.pl in order to kill bad traces. First you will have to circumvent one problem:

The large number of files in the data set and the location of the different traces that need to be killed.

Normally, on the command line you would enter:

sukill <SH_geom_2s.su min=16 count=2 >SH_geom_2s_killed.su
where min in the number of the first trace to kill and count is the number of traces starting with min that will be deleted.

Incorporate this process into a perl script following the example of Xamine.pl

Signal Processing a CDP data set using Perl

Killing bad traces
Recall from previous sections that if you open a shell window and enter the following command you will delete two contiguous traces starting with trace number 16.

sukill <SH_geom_2s.su min=16 count=2 >SH_geom_2s_killed.su
min in the number of the first trace to kill and count is the number of traces starting with min that will be deleted.

Compare the same file before and after traces 16, 17 and 18 have been removed, e.g.

suximage < SH_geom_2s.su

suximage < SH_geom_2s _killed.su
Now we can automate this process further for the case of a real data set by using the following program to display and select the traces:

 Select_tr_Sukill .pl
and the following program to apply the selected traces created by Select_tr_Sukill.pl :

Sukill.pl

Reversing the polarity of bad traces
On occasions trace polarities are totally reversed, that is some traces in a shot gather appear to have amplitudes that are equal but opposite in sign to that of adjacent traces. Normally if we used only Seismic Unix modules for a gather of 24 traces, we would employ:

suwind < input_filename key=tracef min=1 count=1 | suop op=neg > temp1

suwind < input_filename key=tracef min=2 count=23 > temp2
cat temp1 temp2 > corrected_filename

If there are many individual files on which to perform this operation if may more efficient to use the following program which allows a simultaneous selection of many input file names as an arbitrary range of traces whose amplitude will be effectively multiplied by -1:
Reverse_Polarity.pl
Frequency-wavenumber filters

Our data set may contain different types of noise: some random and some coherent. Coherent noise is sometimes identifiable as linear because unwanted data is aligned along one or more characteristic slopes and the same noise is superimposed on good signal. In the T-X domain of shot gather data, a slope has units of s/m or the inverse of velocity. Two-dimensional integral transformations of these data map into the frequency-wavenumber domain (f-k). At least one useful simplification occurs during the integral transformation in that linear X-T data that share a common slope are mapped on to a linear arrangement as well in the f-k domain. If the slope of the noise is different enough to that of the good signal the noise and the signal separate out into distinctly different regions of the f-k domain.
 Try to analyze your data for noise, using the following:

Sudipfilt2 (uses Sudipfilt2.config)

This collection of Seismic Unix flows will produce 6 plots across your screen. Their size and location can be changed within the Perl program, so you are encouraged to copy it over to the equivalent directory in your work area.

The top row of three panels shows the data before it is f-k filtered and the bottom row shows them after they have been filtered.
Currently the key dip-filter settings include two sets of four values each. The inner two values mark the region of interest and the outer two mark the limiting transition zoneThe units for ‘f-k’ samples per trace, for ease of use, rather than m/s. As when we estimated bandpass filter parameters we must be careful not to choose outer dip-filter values that are too close numerically to the inner ones or we will generate unwanted noise.

 The inner region can be assigned for removal or not as can the region outside the outer limits. As with the bandpass-filter parameters we do this by applying weights of 1 through 0 where the following example shows a zeroing effect to the inner-defined region. Internally, the Sudipfilt2 family uses Perl to run the Seismic Unix modules:
@sudipfilter[1] = (“ sudipfilt \\

 dt=1 dx =1 \\

amps=1,0,0,1 \\

 slopes=-11,-7,-4,-3 \\

“);

You should try to change the amp values to the following and note the differences:

@sudipfilter[1] = (“ sudipfilt \\

 dt=1 dx =1 \\

amps=0,1,1,0 \\

 slopes=-11,-7,-4,-3 \\

“);

Modification of trace header geometry

The following notes are repeated from the corresponding section that uses only shell scripts to handle seismic data. Hereon, we will use perl scripts.

Header values are changed according the following formula:

Header value = first_val +

intra_gather_inc * (i % gather_size) +

inter_gather_inc (i %gather_size)

For the following example, first_val, intra_gather_inc, inter_gather_inc, and gather_size represent:

first_val
 is first value of the header word for each group of traces or trace gather.

intra_gather_inc
increments the header word value between traces in, for example, a shot gather.

inter_gather_inc
increments the header word between adjacent (shot) gathers

i

trace number within the whole file: e.g., 0,1,2,3,4,5,6,7,8

Note that i starts at 0. We do not need to set i in the following example.

gather_size
number of traces to jump between shots

If intra_gather_inc or inter_gather_inc are equal to 0, then their products with (i % gather_size) are also equal to 0 and there is no change to the pattern of the header value within adjacent shot gathers. Note that the symbol “%” means modular division. So that for example if the
gather_size = 24, and i = 25,

 we would be dealing with the first trace of the next gather of of 24 traces that is:

 25 % 24 = 1
A useful example, where we change the values of the headers whose names are: offset, sx and gx

name=offset (shot-receiver distance)

name=sx (x co-ordinate of shot position)

name=gx (x co-ordinate of geophone position)

X is increasing and positive, units are in cm. Consider that there are 24 traces per shot gather, although only three of the geophones are shown here:

 sx=0
 gx= 450 750 1050 SHOT #1

 offset= 450 750 1050

 sx=3
 gx= 750 1050 1350
 SHOT #2

 offset= 450 750 1050

 sx=6 gx=1050 1350 1650
 SHOT #3

 offset=450 750 1050
In perl we write the following:

sushw->name(sx,offset,gx,fldr,tracf);

sushw->first_val(0,450,450,1001,1); # first value of each group of traces
sushw->intra_gather_inc(0,300,300,0,1); # increment between first traces of each shot gather
sushw->inter_gather_inc(300,0,300,1,0); # increment between traces in a shot gather
sushw->gather_size(24,24,24,24,24); # number of traces to jump between shots

We can simplify the above into several steps:

Step 1: set the sx field of the first 24 traces to 0, the second set of 24 traces to 3, the third set of 24 traces to 6; i.e. the shot stays at the same place for whole shot gather and only increments when a new shot is taken (i.e. every 24 traces)

sushw->name(sx);
sushw->first_val(0);

sushw->intra_gather_inc(0);

sushw->inter_gather_inc(300);

sushw->gather_size(24);

Step 2: set the offset field of the first shot (first set of 24 traces) to 450,750,1050 , the second shot (next set of 24 traces) to 450,750,1050,… and the last shot (third set of 24 traces) 450,750,1050,… Note that the offsets DO NOT change between shot gathers.

sushw->name(offset);

sushw->first_val(450);

sushw->intra_gather_inc(300);

sushw->inter_gather_inc(0);

sushw->gather_size(24);

Step 3: set the X coordinate of the geophone position to 450, 750, 105,… for the first shot; to 750,1050,1350,… for the second shot (next 24 traces), and to 1050,1350,1650, ..for the last shot (final 24 traces)

sushw->name(gx);

sushw->first_val(450);

sushw->intra_gather_inc(300);

sushw->inter_gather_inc(300);

sushw->gather_size(24);

In a full script he above 3 steps together can look like:

#! /bin/perl
instantiation of programs

 use SU;

 use SeismicUnix qw ($in $out $on $go $to $suffix_ascii $off $suffix_su);

 my $log
= new message();

 my $run
= new flow();

 my $setheader

= new sushw();

input and output files

 my ($DATA_SEISMIC_SU) = System_Variables::DATA_SEISMIC_SU();

 my (@flow);

 $file_in[1]

 = 'All_clean_kill';

 $sufile_in[1]

 = $file_in[1].$suffix_su;

 $inbound[1]

 = $DATA_SEISMIC_SU.'/'.$sufile_in[1];

 $outbound[1]

 = $DATA_SEISMIC_SU.'/'.$file_in[1].'_geom'.$suffix_su;

set up the program with the necessary variables

$setheader ->clear();

 $setheader ->first_val(450,0,450,-100,1001,1);

 $setheader ->intra_gather_inc(300,0,300,0,0,1);

 $setheader ->inter_gather_inc(300,300,0,0,1,0);

 $setheader ->gather_size(24,24,24,24,24,24);

 $setheader ->name('gx','sx','offset','scalco','fldr','tracf');

 $setheader[1] = $setheader ->Step();

create a flow

 @items = ($setheader[1],$in,$inbound[1],$out,$outbound[1]);

 $flow[1] = $run->modules(\@items);

run the flow

 $run->flow(\$flow[1]);
log process

print "$flow[1]\n";

#$log->file($flow[1]);

You probably have noted that the script modifies some other header values, such as scalco, tracf, and fldr.
scalco=-100 is used to scale the units from meters to cm

fldr and tracf are used as additional counters within the gathers (tracf=1,2,3,4 … 24) and between gathers (fldr=1001,1002,1003, etc.)
MATLAB

Create a matrix of numbers

a =[1 2 3 4 5]

a =

 1 2 3 4 5

Sin function

>> sin(a)

ans =

 0.841470984807897 0.909297426825682 0.141120008059867 -0.756802495307928 -0.958924274663138

Plot function

plot(ans)

Exercise 1 Simple 2D plotting

Make a plot showing at least 10 full sine waves within the plot.

What formula did you end up with? Complete by September 16, at 12.30

Exercise 2: Traveltime Equations

Plot the traveltime equation for a hyperbola and the direct wave by modifying the following code: Matlab Code

[image: image2.wmf]2

22

0

2

h

TT

V

æö

=+

ç÷

èø

Plot for T= 0 to 1 seconds and X= 0 to 1000 m; Plot for V1=1500 m/s

Exercise 3: An ideal seismic wave signature—“the spike” -
Seismic temporal resolution is defined, sometimes as ½ the dominant wavelength.

[image: image3.png]Time 1

Time2|

scaled-downreflected
amplitude

Time2

Timed

In reflection seismology, for each reflection interface, a scaled-down copy of the incoming pulse is returned to the surface. A single interface is mapped onto a broad pulse of 25(or less) to even 100 ms (or more) in temporal width:

Plot the following:

[image: image4.wmf]cos()cos(2)cos(3)cos(4)cos(5)

cos(6)....100terms

TTTTT

T

ppppp

p

+++++

+

Plot for T= - 2s to T = 2s, and amplitude 1 to –1. What happens as the number or terms increases? (You should be generating a very narrow function)

Conversely, in the ideal case, what is the ideal frequency content of a narrow, high-resolution signal. Is it a signal with very high frequency content or a signal that is narrow? Is it a signal that is both narrow and with a very high-frequency content

You will need to generate matlab code to answer this exercise. E-mail me the resulting code. E-mail me your answer to the question as well. Please e-mail me this exercise by Friday, 23 September at 12.30 p.m. Hint: You will need to learn how to use the for…end construction so that you can automatically add in 100 terms.

Exercise 4 Constant Phase and Linear Phase
Take the code you generated in exercise 3 and add a constant phase to each of the frequency components and plot your results. Try adding a phase value of 90, 180 and 270 degrees to each of the frequency components. Plot each case. MATLAB CODE . Now add the subplot(2,2,2) case where phase value = 360 degrees.

Take the code you generated in exercise 3 and add a phase to each of the frequency component that is linearly dependent on frequency. Us the following relation:

Phase = m * frequency where m has units of radians/Hz MATLAB CODE. Finally, add one subplot (2,2,2) for the case where m = 40pi radians/100Hz.

You can use the links to my matlab code as an example.

MATLAB CODE

Exercise 2- Matlab

% hyperbola

% Author: Juan M. Lorenzo

% Date: Sept. 13 2005

% Purpose: examine differences in Hyperbolic geometries

% as a function of thickness and velocity for a

% horizontal single layer case

xmin=-500;xmax=500;tmin=0;tmax=0.4

x=xmin:1:xmax; % meters

%first plot

%plot hyperobola

% traveltime equation for a hyperbola

V1=1500;

h = 50; %thickness of first layer in meters

for V1=1000:500:3000

 t=sqrt(x.*x ./V1./V1 +1/V1/V1*4*h*h);

 subplot(2,1,1)

 plot(x,t)

 axis ij;

 hold on

end

Matlab code for exercise 4 – A study of the effects of constant phase and linear phase on a seismic wavelet

CONSTANT PHASE SHIFTS

% looking at constant phase

t= -pi/4:.001:pi/4;

clear Amplitude

phase = 0 ;

Amplitude = cos(2 .* pi .* 1 * t + phase);

for freq=2:100

 Amplitude = (Amplitude + cos (t .* 2 .* pi .* freq + phase));

end

subplot(2,2,1)

length(freq)

plot(t,Amplitude/100)

title('phase=0 deg')

phase = pi/2;

clear Amplitude

Amplitude = cos(2 .* pi .* 1 * t + phase);

for freq=2:100

 Amplitude = (Amplitude + cos (t .* 2 .* pi .* freq + phase));

end

subplot(2,2,2)

plot(t,Amplitude/100)

title('phase=90 deg')

phase = -1 * pi ;

Amplitude = cos(2 .* pi .* 1 * t + phase);

for freq=2:100

 Amplitude = (Amplitude + cos(t .* 2 .* pi .* freq + phase));

end

subplot(2,2,3)

plot(t,Amplitude/100)

title('phase=-180 deg')

Matlab code for exercise 4 – A study of the effects of constant phase and linear phase on a seismic wavelet
LINEAR PHASE SHIFTS

% looking at phase

t= -pi/4:.001:pi/4;

clear Amplitude

m = 20*pi/100

m = 0;

Amplitude = cos(2 .* pi .* 1 * t + m * freq);

for freq=2:100

 Amplitude = (Amplitude + cos (t .* 2 .* pi .* freq + m * freq));

end

subplot(2,2,1)

length(freq)

plot(t,Amplitude/100)

title('phase slope = 0 rad/Hz')

m = pi/2 /100;

clear Amplitude

Amplitude = cos(2 .* pi .* 1 * t + m * freq);

for freq=2:100

 Amplitude = (Amplitude + cos (t .* 2 .* pi .* freq + m * freq));

end

subplot(2,2,2)

plot(t,Amplitude/100)

title('phase = pi/2 rad/100 Hz ')

m = 20 * pi /100 ;

Amplitude = cos(2 .* pi .* 1 * t + m * freq);

for freq=2:100

 Amplitude = (Amplitude + cos(t .* 2 .* pi .* freq + m * freq));

end

subplot(2,2,3)

plot(t,Amplitude/100)

title('phase = 20pi rad/100 Hz')

Extras

Creating a shell script to log in automatically

% gedit a file called start.sh

(CONTENTS of start.sh:)

--leave xedit

%chmod 755 start.sh (make this file executable)

�

NO DATA ???

NO DATA

NO DATA ???

correction

T0

delay = delrt

�

[Type text]
[Type text]
[Type text]

_1188629985.unknown

_1189184097.unknown

