
DIAGON ALIZATION  OF TH E STR ESS TEN SOR  

 

INTRO DUCTIO N 

By the use of Cauchy’s theorem we are able to reduce the number of stress components 

in the stress tensor to only nine values.  An additional simplification of the stress can be 
achieved through diagonalization of the stress tensor.   Diagonalization of the stress tensor 

reduces the number of components to only three.  Many square matrices can be 
diagonalized. 

In this simplified (diagonalized) version of the stress tensor, the principal planes have no 
stress along them and the principal axes are the only directions along which we have any 

stress.  The principal axes directions are orthogonal to the principal planes. 

That is, we start with a general matrix: 
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And end with a simpler matrix: 
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The last matrix has been diagonalized.  The resultant matrix is easier to handle.  For 

example, the square of the diagonalized matrix is simply the square of each of the 
components. 

Recall Cauchy’s Theorem that states: 

 i ji jT n
 

Where T is the traction/stress vector at a point on a plane with normal vector n
 

T the stress tensor is symmetric.  

 

Definition 

A square matrix , M, can become diagonalized into another matrix, D by derivingC , so 

that 



 -1
D = C MC  

In the case that M is the stress tensor, D becomes a description of the same stress field 

from the perspective of a new, rotated co-ordinate system. From the point of view of this 
new stress matrix M is the stress described in the old co-ordinate system.  So, in different 

words diagonalization gives the components of stress in a new, rotated coordinate system. 

That is, we start with a general matrix: 
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and end with a simpler matrix: 
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Components are not the same before and after the diagonalization. The variable name is 
the same but the values are different. 

When a matrix is diagonalizable, it means that the three basis vectors in the new 
Cartesian coordinate system are parallel (in the general case) to three non-basis traction 

vectors in the old coordinate system.  These special three vectors formerly in the old 
coordinate system have new components in the new coordinate system.  These new 

components are the rows of the new (diagonalized) stress tensor.  Diagonalization requires 
us to find these vectors. 

 

Eigenvalues and Eigenvectors 

In other words, this means that: 

 1x̂ || U  and 2x̂ || V and 3x̂ || W  

where the basis vectors are in the new coordinate system (primes) and are parallel to vectors 

that were formerly in the old coordinate system.  The new basis vectors and their 
corresponding former selves are called eigenvectors.  We can express this another way: 

 1 U U ,  



 
2 V V , 

 
3 W W  where   and  are constants, known as eigenvalues. 

 

Let’s take a simple example and consider only vectors in a 2-coordinate system that are 
acted upon by some matrix that we wish to diagonalize (our target). 
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Also, 

The simultaneous solution to this problem is given by Cramer’s Rule: 
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Now, 
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So,  
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 to obtain solutions to U1 

This is also known as the characteristic equation of matrix M 

You should work out that can have two values: 6 or 1 

When =1 then we have  
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These are 



DIAGO NALIZATION O F THE STRAIN TENSO R, AN EXAMPLE 

We will look at the diagonalization of strain instead of the case of stress as this will lead 

us in to the next section. 
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How to find the eigenvalues and eigenvectors of a symmetric 2x2 

matrix 

 

Introduction 

 

We will leave the theoretical development of eigensystems for you to read in 

textbooks on linear algebra or tensor mathematics, or from reliable sources on the web 

such as those listed in the references section at the end of this document.  Here, we accept 

that for any given stress or strain tensor, a coordinate system can be identified in which 

all of the shear stresses or shear strains have zero value, and the only non-zero values are 

along the diagonal of the tensor matrix.  The eigenvectors are parallel to those special 

coordinate axes, and the eigenvalues are the values along the diagonal.  Another way of 

characterizing them is that the eigenvectors are along the principal directions of the stress 

or strain ellipsoids, and the eigenvalues are the magnitudes of the principal stresses or 

strains. 

Let’s call the square matrix we are analyzing matrix M.   
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We want to find all possible values for a variable we will call  that satisfy the 
following characteristic equation: 

det(M – I) = 0,  

or using another common symbol for determinant, 

M - lI  = 0, 

Matrix I in the preceding equations is the identity matrix 
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and variable  is an eigenvalue.  Then 
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The characteristic equation is 

(d - l) e

f (g - l)
= 0  

This determinant can be unpacked as the equation 

((d – )(g – )) – (f e) = 0 

or, simplifying, 

d +gd gf e

The result is a quadratic equation.  You might remember how to solve a quadratic 

equation from deep in your childhood.  In case you don’t, the general solution for the 

quadratic equation 

(a x2) + (b x) + c = 0 

is 

x =
-b ± b2 - 4ac

2a
 

This expression, which is known as the quadratic function, yields two answers for x 

that satisfy the quadratic equation.  In our case, the equivalent terms in the quadratic 

function are 

a = 1 

b = (d + g),  

noting that [(d + g)]2 = (d + g)2, and  

c = ((d g) f e)) 

Consequently, the eigenvalues are given by the quadratic function 



l =
(d + g) ± (d + g)2 - 4(dg - fe)

2
 

or, somewhat simplified, 

l =
(d + g) ± 4 *e* f( ) + d - g( )

2

2
. 

We now have two values of  that satisfy our quadratic equation, and these are the 

two eigenvalues of our 2x2 matrix.  We will refer to the larger eigenvalue as 1, and the 

smaller eigenvalue is 2. 

Now we need to find the eigenvectors that correspond to 1 and 2, respectively.  
Returning to our example using matrix M, we have the following equation to solve to 

find the eigenvector associated with 1 
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which can be restated as 

((d – 1) x1) + (e y1) = 0 and 

(f x1) + ((g – 1) y1) = 0. 

The best we can do with these two equations and their two unknown values (x1 and 

y1) is to determine how one of the unknowns relates to the other.  In other words, we can 

determine the slope of the vector.  If we arbitrarily choose x1 = 1, we can rearrange either 

or both of the previous equations to determine the value of y1 when x1 = 1: 

y1 =
- d - l1( )

e
=
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e

 

or 

y1 =
- f
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An eigenvector that corresponds with eigenvalue 1 has the following coordinates: 
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The length or norm of that vector is 
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Recalling that a unit vector is a vector whose length is 1, we can find the unit vector 

associated with any vector of arbitrary length by dividing each component of the initial 

vector by that vector’s length or norm.  The unit eigenvector that corresponds to 

eigenvalue 1 is 
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We repeat the process to find the coordinates of the unit eigenvector that corresponds 

to eigenvalue 1. 

 

Worked example. 

Given the matrix M below, calculate the eigenvalues and the corresponding unit 

eigenvectors. 

M =
6 3
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Solution. 

The eigenvalues are  

(6 + 4)+ 4 *3*3( ) + 6 - 4( )
2
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= 8.16228  

and 

(6 + 4)- 4 *3*3( ) + 6 - 4( )
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= 1.83772  

We refer to the larger eigenvalue (8.16228) as 1, and the smaller (1.83772) is 2.  An 

eigenvector associated with 1 is 
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The unit eigenvector associated with 1 is found by dividing the individual 
components of the previous vector by the vector’s length 
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 = {0.811242, 0.58471} 

An eigenvector associated with 2 is 

1,
1.83772 - 6( )

3

ì
í
î

ü
ý
þ

 

and the corresponding unit eigenvector associated with 2 is 
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 = {0.58471, -0.811242} 

 

 

In the specific case in which we have a 2-D Lagrangian strain tensor 

e ij =
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the eigenvalues are given by 

l =
(e11 + e22 ) ± 4e12e21( ) + e11 - e22( )

2

2
. 

The larger eigenvalue is 1, and the smaller eigenvalue is 2.  An eigenvector 

corresponding to 1 is 
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and an eigenvector associated with 2 is 
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The unit eigenvectors can then be determined by dividing each of the components of 

these vectors by their length or norm.  The unit eigenvector associated with eigenvalue 1 

is  
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The unit eigenvector associated with eigenvalue 2 is 
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