Computational Tools for Geoscientists	TOC

[image:]

Course notes for:
Computational Tools for Geoscientists (GEOL 4002)
Fall 2008
LSU
Baton Rouge

Juan M. Lorenzo
[Type text]	[Type text]	[Type text]

[bookmark: TOC]

Table of Contents
Acknowledgements	4
Introduction	4
Why do we need to study linux?	4
Why do we need OpenSource software?	4
Where do I get ssh?	4
Are are planning on doing any programming from home?	4
Where do I get Xming?	4
How to run Xming:	4
Why do we need to know sh or Perl?	5
Linux	6
Linux	6
History of Linux	6
Linux Shells (Albing et al., 2007)	6
Directory Structure of the Linux operating system	7
Additional useful linux instructions	10
Vi (Visual Editor)	20
Perl {Hoffman, 2001 #3408} “Practical Extraction and Report Language”	23
Why use Perl?	23
When not to use Perl?	23
Tutorials	23
Basic components of Perl	24
Exercises:	33
Directory structure and file locations	33
Do-loop	33
Awk	33
Perl lists	34
Write out Lincoln’s Gettysburg address using lists.	34
Perl for-loop	34
Perl write to a file	34
Perl read from a file	34
Perl if logical operator	34
References	37

[bookmark: acknowledgements][bookmark: _Toc211151881]
Acknowledgements
Many students have contributed to these notes:
Class of 2008: Erin Walden, Kody Kramer, Erin Elliott, Andrew Harrison, Andrew Sampson, Ana Felix, JohnD’Aquin, Russell Crouch, Michael Massengale, David Smolkin

[bookmark: Introduction][bookmark: _Toc211151882]Introduction
[bookmark: _Toc211151883]Why do we need to study linux?
Creative professional geophysicist and academics are able to explore new ideas without constraints of “black-box” software.
[bookmark: _Toc211151884]Why do we need OpenSource software?
Scientifically, open source products can be verified independently by anyone. Reproducibility is a core tenet of the scientific method. OpenSource software replicates a scientific procedure.
[bookmark: Gettingssh][bookmark: _Toc211151885]Where do I get ssh?
Link to ssh: http://web.wm.edu/it/?&id=2948&svr=www

[bookmark: SSH_home][bookmark: _Toc211151886]Are are planning on doing any programming from home?
· Open SSH. Create a profile named ‘odyssey’.
· Now go to File> Profile>Edit Profile. Edit the ‘odyssey’ profile.
· On the Connections tab: Hostname field: odyssey.geol.lsu.edu (IP 130.29.168.63) Username: the user name given you in class by Dr. Lorenzo. Your password is of the form XXXXXXX, where XX is a number given you by Dr. Lorenzo. The password is case-sensitive. Save changes to your profile.
· You can now connect to the odyssey server using SSH.

[bookmark: _Toc211151887]Where do I get Xming?
Xming is the leading, free X Windows Server for Microsoft Windows.
For notes link to Xming: http://www.straightrunning.com/XmingNotes/
For download of X fonts, use Google, e.g: http://sourceforge.net/projects/xming
For download of Xmin server, http://download.cnet.com/Xming/3000-2094_4-10549058.html

[bookmark: RUnXming][bookmark: _Toc211151888]How to run Xming:
· Making sure that you’re still connected in SSH, run XLaunch to configure Xming to connect to odyssey. Choose one window, then make sure that “Start no client” is checked. Click Next>Next>Finish. Logout of SSH(File>Disconnect) and then reconnect by selecting the odyssey profile.
· If you are having problems connecting, open the odyssey profile in SSH and go to Edit>Settings. Under the Tunneling option on the tree, make sure that the “Tunnel X11 Settings” option is checked. Make sure to save your profile.
· You now know you correctly edited the .login file if it reads DISPLAY: undefined variable. If you get something with error in it, check to make sure the setenv line is commented out.

[bookmark: _Toc211151889]Why do we need to know sh or Perl?
Shells are the basic sets of instructions for handling the operating system and perl is a mature, widespread computer language ideal for file manipulation. Perl can serve as a simple “glue” to make diverse pieces of software talk to each other.

	Name
	Purpose
	Type
	Niche
	Easiest OS

	sh
	command language interpreter , i.e., OS instructions
	Low-level
	Program the OS
	Linux

	Perl
	Scripting language with tools like in C or Fortran
	Low-level text-based
	"Glue" for all other programs
	Linux, MacX Windows

	Matlab
	computational programming
	High-level
	Matrix manipulation
	Linux, MacX,Windows

	GMT (Generic Mapping Tools)
	Quantitative analysis and display of 2D,geographically referenced geophysical data sets
	Low-level C programs
	Marine geophysics
	Linux, MacX (Windows native or under *Cygwin)

	Strata
	Interactive 2D modeling of basin stratigraphy
	Interactive
	Sedimentary analysis of basins
	linux

	GRASS
	Interrrogation, DB, calculations and displays of 2D, 3D vector-based geographic data sets
	Low-level C programs
	Surface Process
	linux

	MBSys
	Quantitative analysis and display of 2D,geographically referenced sonar data sets
	Low-level C programs
	Marine geology
	linux

[bookmark: _Toc211151890]Linux
The single-most advantage of linux is that the code is freely available so many people around the world participate in its improvement continuously. I first view Linux as a communal, philanthropic exercise which takes advantage of the cooperative nature of our species. Linux is also a collection of instructions in software that allow you to use the hardware in your computer.

If well thought out, visually identifiable commands are friendlier if but slower to use, (although especially tedious to write and computationally less efficient). As part of linux there is a “point and click” WYSIWYG (“What-you-see-is-what-you-get”)/GUI(“Graphical-user-interface”) to drive the same instructions, visually.

[bookmark: Shells][bookmark: _Toc211151891]Linux
[bookmark: HistoryLinux][bookmark: _Toc211151892]History of Linux
Click here for a more comprehensive history of the subject by Ragib Hasan at UIUC.
Linux was developed (for free) by Linus Torvald possibly inspired by at least the GNU project (“GNU’s not Unix”) , a software movement to provide free and quality software.

LINKS to sites that have important shell instructions:
Important Instructions in sh

[bookmark: LinuxShells][bookmark: _Toc211151893]Linux Shells (Albing et al., 2007)
Q. What is a shell?
A shell is a convenient collection of command-line-instructions (actual programs), written in a low-level language, such as C, which allow the user to interact with files and the hardware and files. Shells have been around since the start of the unix-type operating systems and have the advantage that they interchangeable among different linux operating systems. Although the instructions may have to be recompiled for each machine the syntax remains constant and once learnt will last a career.
Example, ls.
ls stands for: “list the contents of this directory”
Q. Why are there different shells?
Q. What are the different shells?
sh: the original “bourne-shell”
csh: the“C-shell”
The csh improves upon the sh because it introduces convenient programming tools inherited from C
ksh: the “k-shell”
The commercial nature of this shell limited the growth of its popularity from the start.
bash: the “bourne-again-shell”
The bash shell is ubiquitous among any linux-type operating systems you might encounter. The bash shell inherits the advantages and experiences of all prior shells.
Q. Which one should I use?
	For this class the default is: csh

[bookmark: DirectoryStructureInLinux][bookmark: _Toc211151894]Directory Structure of the Linux operating system

In any operating system, linux programs and user directories are stored in predictable locations. Exercise

Q. Do you know where the passwords are kept? Exercise

Q. What are “system permissions”?
Every file and directory in linux has assigned codes which dictate the degree of authority by each user of the computer to alter each file. There are four types of user status on linux. First is the overall supreme administrator known as “root” and who can do anything to any file on the system. Next comes the specific original owner/user of each file. All users can belong to one or several named “groups” of users. Finally anyone who is not specified as belonging to your group or is not the supreme adiministrator is considered belong to the outside “world”, or all other users. Within each of the status levels: owner, group, world, binary codes or their letter equivalents may be set to indicate whether a file may be only browsed (“read”), modified (“write”), and/or executed as a program (“executable”). Note that it is the files themselves that carry this important information with them. The file permissions are consulted first to determine whether an individual user has authority to manipulate the file in any way.
The purpose of this complex permission scheme is to provide an infinite variety of protection schemes for the file systems but yet maintain an unsinkable file system. In theory, and for much of practice, an individual user will not be able to shut down the system; they will only be able to do damage to themselves and not the files or others.
System permissions belonging to a file or directory can only be changed by those users for whom files have had the proper permissions already assigned. Initially it is “root” that sets all the first set of permissions for files and directories when a user is given a space to work on the system. From the first logon, the user has control of their assigned set of files and directories.
If you want a file containing Perl code to become executable in the system the creator of the file is required to change the appropriate permission setting for that file. Following are the equivalent numeric codes for the different types of permissions:

Read only - 4 Write only – 2 Execute only - 1
Read and write – 6 Write and execute – 3 Read, write and execute – 7 (add all three numbers together)
For example:
% ls –l
My_perl_file r _ _ r _ _ r _ _
There are three spaces to explain the type access by user:
 (“read” access), group (nothing/0) and everyone-else (dash/0), respectively. The next three spaces show the same for the group to which the user belongs and the final three for all other users.
In order to change “permissions” to allow the file to run as a program enter the following:
chmod u+x
which only adds (“+”) the setting that gives only the owner (“u”) executing privileges
Or, equivalently
chmod 600
In the numeric form the last two zeros mean that “group” and “others” priviliges are nill. As you can see the numeric form can alter permissions for all the three types of linux users at once.

Here is a summary list of options used for setting file permissions and understanding file types on the linux system
	Abbreviation of user status
	Stands for …
	Abbreviation of file permission
	Stands for …

	u
	user
	r
	read

	g
	group
	w
	write

	o
	others
	x
	execute

	a
	all
	
	

	+
	add
	
	

	-
	remove
	
	

	d
	directory
	
	

	l
	link
	
	

Examples:
	Letters symbols
	Numerical symbols
	
	
	

	chmod u+rwx
	chmod 700
	
	
	

	chmod u+rwx
chmod g+rw
chmod o+x

	
chmod 761
	
	
	

Q. Can I do any damage to another person’s files?
Yes, if the files belong to you. You can tell if you own the files by reading the second column from the ls –l instruction, which has the general form

drwxr-xr-x “number of links” “your login name” “your group name” filesize(bytes) date etc.

[bookmark: ImportantLinuxInstructions][bookmark: AdditionnalusefulinuxInstructions][bookmark: _Toc211151895]Additional useful linux instructions

[bookmark: systeminstructions][bookmark: _System_Instructions]System Instructions
Moving Around
Logging In
Review previous instructions
Running a Remote Session
Running a program
Help manuals
Secure file copying across the internet

[bookmark: cd]Moving Around
If you are lost in the system and need to get back to your own directory, an alias (shortcut) has been generated for you in a hidden environment script:
% cd
If you want to relocate yourself in the system, e.g., go to the directory that contains the passwords:
% cd /etc

	TOC System Instructions

[bookmark: loggingin]Logging In
Type your login id, followed by your password
	TOC System Instructions
[bookmark: history]Review previous instructions
Currently, up to about 60 of the latest comman-line-instructions you have entered are stored while you work in linux. If you want to see what they are input:
%history
You will immediately get a list of all the instructions you have recently entered and each successive instruction is identified by a number that appears first on each line. If you want to repeat any particular instruction enter an exclamation mark followed by the instruction number:
% !instruction_number
	TOC System Instructions

[bookmark: runningaremotesession]Running a remote session	
[bookmark: remotesession]ssh yourname@odyssey.geol.lsu.edu
setenv DISPLAY localhost:10.0 (redirect images to the machine you are sitting at)

Answer "yes" to the question involving "authenticity". You may only see this question the first time you log on from each machine.
You should see a "prompt" such as
 %odyssey:/home/yourname %
[bookmark: ls]To see what is in your directory:
 %ls –l
To see everything in your directory, even hidden files (.*):
%ls –la

TOC System Instructions
[bookmark: runningaporogram]Running a program
In order for a file to become a program, it must be executable.
	
TOC System Instructions

[bookmark: HelpManual]Help Manuals
Online manuals for each shell instructions can be called via the “man” command, e.g.,
% man cd
% man ls
% man pwd
Once you are in a help manual you can move around inside by using keyboard shortcuts which are listed within each manual. If you want to make a short help list appear, type “h”. In order to find specific text within a manual, input
 “/a_specific_word”
For example, the following instruction entered from within the manual page for “ls” looks for the first occurrence of the switch “-l”
 /-l
TOC System Instructions
[bookmark: sftp]Secure file copying across the internet
1. Using SSH-secure FTP
Double-click on the ssh file transfer icon
When prompted, enter your password
Click connect and Enter
To transfer the file, just drag and drop into the desired directory
Another way to do this is to set up a program that will do it for you
At the prompt: odyssey:/username% enter sftp email@domain.com or machine name (e.g. odyssey.geol.lsu.edu)
They will then exchange information and ask for a password.
You can then copy from your local account to wherever you like.
But for our purposes, drag and drop is sufficient.
The ssh file transfer allows you to see the file transfer pane and the local directory at the same time.
With SFTP you have to connect and interact with another server

2. If you are using a linux box or a Macintosh (with MacOSX)
At the prompt: odyssey:/username% enter
^% sftp email@domain.com or
% machine name (e.g. odyssey.geol.lsu.edu)
They will then exchange information and ask for a password.
You can then copy from your local account to wherever you like.

Once you are connected to the remote machine the following basic instructions will get you going:
help
get 	download a file over to the directory on the local machine
put 	upload a file to the remote machine
ls 	list CONTENTS of the remote machine
lls 	list directory CONTENTS of the local machine
pwd l	working directory name of the remote machine
lpwd 	working directory name of the local machine
history	gives a list of recent instructions
!”number”	repeats instruction “number” from history list
!”Letter”	repeats last instruction in history list that starts with “Letter”
Tab	automatic completion of a file name
^D	When file completion does not complete the file it means that another file name may exist with the same beginning letters. By entering a “control-D” you can inspect the names of these other ambiguous files. Continue within file completion by entering the next character.

TOC System Instructions

[bookmark: FileManipulation]File Manipulation
Archive of directories and their contents
Assigning values to variables in shell scripts
Creating a shell script to log in automatically
Comparing files
Concatenating files
Copying a file to your home directory
Deleting Files
Duplicating files
Editing a file
Examining content without directly opening the file
Finding files
Renaming files
Repetitive tasks
Screen dump
Changing file content- awk

[bookmark: tarring]Archive of directories and their contents	
When it comes to collating all your directories and their contents into a single manageable file that can keep a record of the directory structure use the instruction called tar as follows:
%tar –cvf tarred_file_name directory_to_archive
A file called tarred_file_name is created. Usually it is best to give your tarred file a *.tar ending so you can automatically know what type of file it is in future. In order to open up and generate all directory tree with all its leaves (which are the files contained within) use the following command:
% tar –xvf tarred_file_name
If you choose to get ONLY a LISTING of the contents of a tarred file without rebuilding the directory tree and all its contents you can instead use the following command:
% tar –tvf tarred_file_name >output_file or if you want to output the listing to the screen use:
% tar –tvf tarred_file_name
TOC File Manipulation
Assigning values to variables in shell scripts	
A free linux shell scripting tutorial:
http://www.freeos.com/guides/lsst/
	Example 1
The text ‘hello’ is assigned to the variable named output The value of the variable is expressed as $output The variable name can be any word.
	Example 2
The number 1 is assigned to the variable named value. The value of the variable is expressed as $value
$1 is assigned value 2 from the command line (outside the shell script). This number is the first value on the command line after the prog name
Arithmetic calculations are carried out by a shell program called expr.

	%prog_name
	%prog_name 2

	#!/bin/sh
Output ’Hello, handsome’
echo $output
	#!/bin/sh
value=1
$new_value = $[1+$value]
echo $new_value

TOC File Manipulation
Creating a shell script to log in automatically	
TOC File Manipulation

[bookmark: comparingfiles]Comparing files
%diff file1 file2
TOC File Manipulation

Concatenating files	
When you have one files you would like to append to another use the
%cat file1 file2 > file3
TOC File Manipulation

[bookmark: copyafiletohomedirectory]Copying a file to your home directory
To be safe, don’t work on the original version of a file. Make a copy
Type in cp (which means copy) and then the file name:
% cp (FROM)filename (TO)filename2
If you don’t remember the file name, hit the tab key and it will try to find the file name for you.
Example: Copy test 2.sh
Type:
	% cp test2.sh test1.sh
You have now made a copy of test2.sh named test1.sh
To test the copy
Type
%ls –l
A list of programs will pop up and you should see test1.sh listed.
	
TOC File Manipulation

Deleting Files	
%rm filename
In order to delete a file without any bothersome questions from the operating system enter:
%rm –rf filename
The following instruction will mean INSTANT DEATH and RIDICULE In order to delete everything you own system enter:
%rm –rf *

Instant death for your grade and will result in many people laughing at you

TOC File Manipulation

[bookmark: duplicatingfiles]Duplicating files	
%cp file1 file2
TOC File Manipulation

Editing a file	
% gedit .cshrc
Move down (use cursor arrows) until you see the line that has the word "source" in it and on the next line enter:
% source /usr/local/admin/cshrc_local
Exit gedit and enter the following instructions:
% source .cshrc (updates the behavior of your operating system)
TOC File Manipulation

[bookmark: greppingfiles]Examining content without directly opening the file
% grep searchtext filename(s)
TOC File Manipulation

Finding files	
% locate filename
TOC File Manipulation
[bookmark: slocate_grep]Finding files in combination with grep
This instruction can be very useful when you are trying to locate a file from among many others.
% slocate perl | grep bin | grep usr
In the example above we are attempting to locate “perl”
We know that “perl” exists within a directory called “bin”
If we do not use the grep command and only the first “slocate perl” instruction the output to the terminal will be long and confusing. To find this out for yourself try the following alone:
% slocate perl
Once you see this output you can try the following, slightly longer sequence:
% slocate perl | grep bin
The second “grep bin” commands filters out the preceding stream of text to those pieces that have “bin” in the file name or its complete directory address

Finally try the full instruction:
% slocate perl | grep bin | grep usr
You should have notice that with each additional “grep” command the final output list becomes smaller because we are restricting the search for additional text items.
TOC File Manipulation

Renaming files 	
 % mv old_file_name new_file_name
TOC File Manipulation

[bookmark: repetitivetasks]Repetitive tasks	
#/bin/sh
for action in 'came. ' 'saw.' 'conquered.'
do
 echo 'I ' $action
done
The variable called action can have three values. Each value is a word that is sent to the screen using echo within the do …done set of instructions. The $ sign in front of action assigns its value to be sent to the screen each time following the word I. Exercise
TOC File Manipulation

[bookmark: screendump]Screen dump	
% gimp
Experiment by dumping an image of the screen into a file, opening it and then printing it.
-GIMP (GNU Image Manipulation Program): A free image drawing package, available for most operating systems (Mac, Windows, Linux)
-Within FSSH client, to use GIMP, invoke with
	% gimp & (click OK through all the default settings)
-In the GIMP window, if you want to capture a windowed screenshot, go to:
	File Acquire Screenshot and select Single Window
	The cursor should become a crosshair, and then you may select the window you wish to capture. Once selected, you may save the captured image using:
	Right click mouse over image File Save as and then simply select an extension (.bmp, .jpeg, etc.) and select a file name. Once saved, you may use FSSH secure transfer to save the new image file to your personal PAWS window.

TOC File Manipulation

[bookmark: awk]Changing file content with awk
Awk can be run as a series of instructions from within a script. I use if for simple operations that would be too troublesome to program in perl, C or any other language for that matter. A command-line-instruction using awk includes its principal instructions within single-inverted commas and braces
% awk '{ instructions }' infile > outfile

One example of great use for awk is to change the order of columns in a file. Create a file with three text columns separated by tabs. From the command line, enter:
% awk '{print $2, $3, $1}' infile > outfile
Commas will generate spaces between columns in the output file
Another very useful application for awk is to carry out some simple math on the columns of data:
% awk '{print $1 $2*2 $3+3}' infile > outfile

Yet, another examples:
	% awk ‘{print $3, $1}’ my_name > my_name_reversed
	“print $3, $1” is an instruction to print the contents of the 3rd column first, use a space, then print the contents of the 1st column. “my_name” is the file that contains your name (for example Stevie Ray Vaughn) and the “my_name_reversed” would be printed as Vaughn Stevie.

A math operation example:
	% awk ‘{print $3+1.1, $1/0.1}’ first_file > second_file
	A simple command that tells the machine to take the contents of the 3rd column in “first_file” and add 1.1 to it and then take the contents of the 1st column and divide by 0.1. These new values would be stored and created in “second_file”.

A final use for awk is to do quick substitutions
awk '{gsub(/foo/,"bar");print}' infile > outfile
“gsub” is an instruction that is used to substitute one value or string of values for another. An example for the syntax would be:
	% awk ‘{gsub (/3/, “6”); print}’ infile > outfile
Here, again, we’re asking the program to take a look at “infile”. The instructions inside the bracket tell the program to substitute any 3 (the value within the slashes) with a 6 (the value within the double quotations) and then print this into a new file called “outfile”.

Where can you get a tutorial?: http://www.vectorsite.net/tsawk.html

Exercise
TOC File Manipulation

[bookmark: _Toc211151896]Vi (Visual Editor)
Vi has been insulted by many as an antiquated tool for working on a computer. But, regardless of the linux machine you have, and in the worst of field conditions (from experience) vi will always work. There is a steep learning curve of a few weeks of practice, (like learning to type) but in the long run I save a lot of time. I save time because CLI are faster to enact and because vi has proven longevity so anything I learn today will still be useful 20 years from now. Many basic instructions in vi are inherited from the OS.

Some common instructions in vi include those shown in the following table:
	Mode
	Instruction
	Purpose

	Insert
	i
	To insert text and make general changes to text

	Browse
	:q
	Close the file without making changes

	Browse
	:w
	Save changes

	Browse
	:wq
	Save changes, then close the file

	
	ESC
	Leaves Insert mode and takes you to Browse Mode

	Browse
	u
	undo

	Browse
	dd
	 Delete current line and move into first buffer

	Browse
	x
	Delete current character

	Browse
	2dd
	Delete 2 lines and mover them into the first buffer

	Browse
	dw
	Delete next word

	Browse
	d2w
	Delete next 2 words

	Browse
	yy
	Paste the current contents of the buffer below

	Browse
	o
	Open a line below the current position for editing mode

	Browse
	a
	Append to the end of the line and enter the editing mode

	Browse
	p
	Paste buffer

	Browse
	r
	Replace current character by following character (enter a character)

	Browse
	R
	Replace all following characters by the proceeding typed text
In order to leave this mode, enter R again

	
	
	

	yy
	copy

	p
	paste

	u
	undo

	x
	Delete character

	escape
	save

Editing in vi

· Type in vi .login . You will now be looking at a screen with the .login file on it. Type in /set to search for variables beginning with ‘set’, because we’re looking for setenv, environmental settings.
· It should read setenv DISPLAY odyssey:0 So all displays will show up on the odyssey server on the main screen (0). You’ll have to change these variables so that it will display the images you pull down on your own personal machine (whether laptop or PC).
· To enter editing mode in vi, type in i. You can now being screwing things up. You’ll know you’re in i mode because insert will appear at the foot of the SSH screen. You can still navigate with the up and down arrows.
· At the beginning of the setenv line, add in a hash mark, #. This makes the line following it a comment. Comments are used in programs to provide information to programmers looking at the code.
· To leave editing mode in vi, hit Escape. To save your changes, type in :wq which writes the file (w) and then quits (q). You’re now ready to run Xming.

LINKS to sites with information on vi :
Colorado State University Computer Science Department
University of Hawaii at Manoa

[bookmark: perl][bookmark: _Toc211151897]Perl {Hoffman, 2001 #3408} “Practical Extraction and Report Language”
[bookmark: _Toc211151898]Why use Perl?
There are certainly “better” ways to write code, but here are my reasons to use perl:
(1) It costs nothing, is mature and widely available
(2) Testing is quick; “on-the-fly”. Perl is an interpreted language which means that code is translated into the machine language while it is running one line at a time so that places where there are errors are easy to locate.
(3) Perl can easily incorporate shell programming scripts. Perl can be used as a “glue” to organize a computational workplace. Perl can be used to communicate between different modular command-line Open Source programs.
(4) Perl can be used for more complicated programs that require setting up functions or “sub-routines” that help keep complicated programs modular and simple
(5) Handling text files and their content is carried out more easily than with other programs
[bookmark: _Toc211151899]When not to use Perl?
When there are many mathematical operations
When you know of an easier way that will save you time and frustration
When you are thinking about including a graphical interface to make it friendly to use
[bookmark: _Toc211151900]Tutorials
A great place to start is to use the online tutorials in linux. Check this out:
% info perl
………….
 perl Perl overview (this section)
 perlintro Perl introduction for beginners
 perltoc Perl documentation table of contents

 Tutorials

 perlreftut Perl references short introduction
 perldsc Perl data structures intro
 perllol Perl data structures: arrays of arrays

 perlrequick Perl regular expressions quick start
 perlretut Perl regular expressions tutorial

 perlboot Perl OO tutorial for beginners
 perltoot Perl OO tutorial, part 1 ………
 perltooc Perl OO tutorial, part 2
 perlbot Perl OO tricks and examples

 perlstyle Perl style guide

Notes: Use the up and down arrow keys to move
 Control C will get you out of any program

[bookmark: perl_basic_components][bookmark: _Toc211151901]Basic components of Perl

[bookmark: perl_IO]Input and Output
[bookmark: perl_print_Hello]Printing Hello World

#!/usr/bin/perl
#This is my first program in perl
print (“Hello World\n\n”);
In the above example there are five things to note.
(1) The first line denotes the location of the perl binary
(2) From now on all items that are output to the screen will be included in parentheses and double inverted commas. Double-inverted commas permit Perl to interpret the different items. For example some items are read as text and others as “special characters” when needed. (Try out single commas just to see what would happen). If you want to null the value of a special character put a “\” before it. For example “\\n” makes “\n” come out just like the characters you see. (Try it out).

(3) the “\n” is a shorthand code that means include a new line when the rest of the text is written out. There is a new line before the start of writing and there are two new lines after the start of writing.
(5) All lines except the first and the line commented out end with a “;” denoting the end of an instruction.
(4) The symbol “#”on the second line means that these words are informational for the reader and will not be considered by Perl to be a meaningful instruction.

Reading from and Writing to a file
If you want to read and write data to hard drive you must first tell the system you are ready to access a part of the hard drive. This is done by opening a “FILEHANDLE” or a file address. You must also provide a name. The FILEHANDLE should be closed when you are done reading or writing to the file.

Here is an example of opening a file:

#!/usr/bin/perl
open (FILE, “filename”) || die (“can’t open this file $!”);
$i=0;
	while ($read = <FILE>) {
		@line[$i] = $read;
		$i=$i + 1;
		}
$imax = $i;
close (FILE);
for ($i=0;$i<$imax;$i=$i+1) {
	print (“@line[$i]”);
	}

“$!” is a special operator indicating a system error has occurred.
“<>” is the line-reading operator which continues by itself until the end of the file is encountered
Line reading continues as long as the value of the “while” statement is true, i.e. as long as the content of the parentheses remains TRUE (=1).

Reading is quite straight forward except for the following:
(1) remember that lines of data may have invisible characters that you may want to remove
(2)
Here is an example of writing to a file:

#!/usr/bin/perl
$imax=3;
for ($i=0;$i<$imax;$i=$i+1) {
	@line[$i] = $i;	
	print (“@line[$i]”);
	}
open (FILE, “> filename”) || die (can’t open this file $!”);
for ($i=1; $i<3; $i=$i+1) {	
	print OUT @line[$i]
		 }
	close (FILE);
Note that the only important difference between reading and writing is that we have a redirect sign “>” before the filename.
Exercise
[bookmark: perl_common_variables][bookmark: perl_data_types]Data Types
Just as we saw in dealing with shell variables we distinguish between the value stored on a hard drive and the name associated with that number.
A perl variable is a place to store the value, which is called the literal.
For example:
#!/usr/bin/perl
#This is my second program in perl
$number = 2;
$output_text = (“Hello world”);
Print (“\n$output_text \n\n $number”);

When writing out text, note that text consists of individual characters strung together in a line, including minus signs, plus signs, spaces, tabs, end-of-line-characters, etc. A string of characters is just that, a string. In the example above we assign (“Hello world”) to the variable $output_text.
Perl-Data Types

[bookmark: perl_Variable_Lists]Lists of Variables or Arrays
If you want to include various lines of texts it might be cleaner to break up the text into different segments. In order to handle this we can create a “list” of lines of text.

#!/usr/bin/perl

#This is my third program in perl
@output_text[0] = (“Hello world\n”);
@output_text[1] = (“I want to live\n”);
@output_text[2] = (“I want to flourish\n”);

Print (“\n@output_text[1] \n”);

 List variables carry the “@” sign at the beginning of their name. The list is ordered starting at 0 and not at 1.

Yes, you could also write the list with a different syntax:

#!/usr/bin/perl

#This is my third program in perl
@output_text = (‘Hello world\n’,’I want to live’,’I want to flourish’);
Exercise

A list of variables is also known as an array:

#!/usr/bin/perl -w

#PURPOSE: describe perl arrays
@output_text = (“ Four score\n”,”and seven years ago\n”,”our fathers landed\n”);
print(“@output_text[2]\n”);
print(“$output_text[2]\n”);
print(“The number of values in the array is: [@output_text[$#output_text] +1]\n”)
Is there a difference between the two outputs?

There are a couple special arrays which will need later when we write functions and perl programs that can interact with the user, that is they require input from the user such as a number or a file name on the command line : e.g.
%program_name.pl input_file_name add_this_number output_file_name

The first variable is called @ARGV and keeps track of the order of the values that follow the name of the program above.
Another special variable @_ is needed to pass arrays to a subroutine (a sub-program)
Perl-List of Variabless or Arrays

[bookmark: perl_scalars]Scalars
Scalars are single-value data types. That is, only one value is assigned to that variable and the value can be a string or a number. Scalars are indicated by a “$” sign at the beginning of the variable.

There is one special variable in perl that is useful to know. Commonly you will want to know the number of values your array. The length of your array or the number of values in your array would be equal to the largest index plus 1. For this purpose there is a special scalar variable in perl you can use. This special variable has a literal value equal to the last index in the array:

#!/usr/bin/perl -w

#PURPOSE: estimate array length
@output_text = (" Four score","and"," seven years ago","our fathers landed");
$array_size = $#output_text + 1;
print("The number of values in the array is $array_size\n");
print("The last of value stored in the array is:\n”);
print(“\t\t@output_text[$#output_text]\n");

Note have inadvertently we have introduced, briefly, how carry out some simple arithmetic from within perl.
Perl-Scalars

[bookmark: perl_hashes]Hashes
Hashes represent a set of key/value pairs, but we will leave this for later.
Perl-Hashes
[bookmark: perl_for]For-loop/Do-loop in perl
Do-loops (herein “for-loop”) are a term inherited from Fortran (and sh). In Perl there is a simple syntax to handle repetitive tasks that is very similar to C and Fortran, and Matlab. After all, computers ARE supposed to be used for doing repetitive tasks very fast. Here is how we do a loop:

#!usr/bin/perl
NAME:
PURPOSE: To show off for loops
$max = 10;
for ($i=0; $i<=$max; $i++) {
 @output_number_array[$i] = $i+1;
}

for ($i=0; $i<=$max; $i++) {
 print ("For index = $i \t value = \t @output_number_array[$i]\n ");
}
Inside the parentheses after the “for”, there are three instructions. The first instruction “$i=0” provides the START of the loop. That is, the first instruction is the first thing that is carried out in the loop. Remember this!
The second time the loop is run, the third instruction is carried out, i.e. the $i value is updated by adding 1 to the previous value. At that point the second instruction must be met for the calculations to enter the loop again. If the second instruction is not me then the loop is exited and the “$i” retains its previous value from the end of the last loop. To be safe, you can examine the value of $i when the loop is exited.
Note that we can work the index in reverse as well and that the values of “$i” can increment by more than just “1” each time.

Exercise
Perl-for loop
[bookmark: perl_operators]Perl operators
Various symbols exist in perl that are very similar to operators in other programming languages. Operators can be of several types depending on whether you are dealing with NUMBERS or CHARACTER STRINGS.
 Arithmetic
 + addition
 - subtraction
 * multiplication
 / division

 Numeric comparison
 == equality
 != inequality
 < less than
 > greater than
 <= less than or equal
 >= greater than or equal

 String comparison
 eq equality
 ne inequality
 lt less than
 gt greater than
 le less than or equal
 ge greater than or equal

Boolean logic
 && (and)
		and (also and)
 or (or)
 ! (not)
		Not (also not)

Miscellaneous
 = assignment
 . string concatenation
 x string multiplication
 .. range operator (creates a list of numbers)

 Many operators can be combined with a "=" as follows:

 $a += 1; # same as $a = $a + 1
 $a -= 1; # same as $a = $a - 1
 $a .= "\n"; # same as $a = $a . "\n";
Perl- operators
[bookmark: perl_if]Conditional if
An if statement allows perl to pass judgement on two variables. If the judgement has a TRUE (1) outcome then the instructions inside the curly braces are carried out, otherwise (FALSE ; =0) the perl language jumps to the first line after the “If” statement.

An “if statement” in its shortest version looks as follows:

#!/usr/bin/perl
@value[1] = 1.1;
@value[2] = 1.0;

if (@value[1] >= @value[2]) {
 print (“\You have entered the first set of instructions\n”);
}

else {
 print (“\nYou have entered the second set of instructions\n”);
}

Exercise
Perl-conditional if
[bookmark: perl_SystemCommands]System commands
All that you have learnt prior to perl regarding the linux OS and shell can still be used within perl. Say, for example you wish to generate the following working set of directories:

/home/loginID
/data /progs /images
 	/jpg /tiff

#!/usr/bin/perl

$HOME = (“/login/loginID”);
$DATA = $HOME

print(“\nMaking directories @directory[1] \n”);
system (“ 					 \\
 mkdir –p 	@directory[1]	 \\
	“);

Exercise

Perl-IO

[bookmark: _Toc211151902]Exercises:
Please e-mail me your answers in the form of an MS Word document
[bookmark: _Toc211151903]Directory structure and file locations
[bookmark: Exercise_linux_drectory_strct]In this exercise use the ls instruction to outline the first four layers of directories under “/”. Name and describe three subdirectories within in each directory. In the example below the first three subdirectories of the second level are shown. Three suchdirectories are required for a 3rd and also a 4th level. What is contained in each directory. For example you will start with the following: (50%)
 (
/ (1
st
 level)
)

 (
/var (2
nd
 level)
) (
/bin
) (
/usr
)

[bookmark: Exercise_linux_password]While you are looking inside the directories, write down where the passwords seem to be kept (25%). Also, where is the printer information kept, and where are files kept that are sent to the printer? (25%)
Directory Structure of the Linux operating system

[bookmark: Do_loop][bookmark: _Toc211151904]Do-loop				
Write a shell that recursively adds 1 to an initial value. For example, start with 1 and then add 1 to that to produce 2. Add 1 to the value 2 to produce a value 3. Write out the answer each time. You need only write out 2 values at most. (50%) Call your file do_loop.sh, leave it in your home directory, make it executable, editable and writable ONLY to you. (50%)
Repetitive tasks

[bookmark: Exercise_awk][bookmark: _Toc211151905]Awk		
Write a program that reverses a list of names in a file. First create a file that contains you first and last name separated by a tab. Next invert the order so that your last name appears first and your first name appears last. Make a copy of this program and e-mail it to me.		
Changing file content with awk

[bookmark: Exercise_perl_Lists][bookmark: _Toc211151906]Perl lists
[bookmark: _Toc211151907]Write out Lincoln’s Gettysburg address using lists.

[bookmark: Exercise_perl_for_loop][bookmark: _Toc211151908]Perl for-loop
Write a perl “for-loop” that will generate an [1row x 10 columns] array:
24 21 18 15 12 9 6 3 0 -3

[bookmark: Exercise_perl_file_write][bookmark: _Toc211151909]Perl write to a file
Use the previous perl “for-loop” and write the array to a text file
On the first line write your name
Output three numbers per line

[bookmark: Exercise_perl_file_read][bookmark: _Toc211151910]Perl read from a file
Use the previous perl “write-to-a-file”.
Modify the previous perl program and use it to read the text file.
Output all the lines you read to the computer screen with a
neat format output.

[bookmark: Exercise_perl_if][bookmark: _Toc211151911]Perl if logical operator
Use the example in the instructors folder for this exercise. The example is called “perl_if.pl” Modify this file so that the program also automatically outputs the name of the oldest child to the screen
Conditional if

[bookmark: Exercise_perl_SystemCommands]Perl system commands
Create a perl program(s) that generate(s) the following directory structure:

/home/”yourlogin”

/”yourProjectName”

/seismics /geomaps /wells /gravity

In each of the four previous directories create the following five (5) directories:
/data /images /pl /sh /matlab

In each of the immediately previous directories also create the following two (2) directories:

/081207 /010508

Finally in each of the immediately previous directories create:

/1 /2

Please call this program “yourname_mkdir”

You should created about 160 directories as a result of this exercise.

(2) Repeat all the above exercises but simplify the program by including a “for loop “ to carry out the creation of files. Please call this program “yourname_mkdir_loop”

(3) Finally, create a program that will, in addition to step (2), change rwx permissions (chmod 655 “directory”) of ALL the directories created above. Name this program “yourname_mkdir_chmod”
Perl-System commands

MATLAB - Basic Matrix Operations

Some of the following examples are taken from Trauth’s 2007 book, the Mathworks online tutorial and a great online tutorial at the following website
http://www.stanford.edu/~wfsharpe/mia/mat/mia_mat3.htm

This is a demonstration of some aspects of the MATLAB language.

First, let's create a simple vector with 9 elements called a.
a = [1 2 3 4 6 4 3 4 5]

a =

 1 2 3 4 6 4 3 4 5

Now let's add 2 to each element of our vector, a, and store the result in a new vector.
Notice how MATLAB requires no special handling of vector or matrix math.
b = a + 2

b =

 3 4 5 6 8 6 5 6 7

Creating graphs in MATLAB is as easy as one command.
Try the following three different cases to see how the color and marker in the graph can be changed.

plot(b)
plot(b,’*’)
plot(b,’r*’)

Syntax in MATLAB
Matrix stands for matrix laboratory, which is what MATLAB does best.
Let’s now create a multi-dimensional array:
A = [1; 2; 3]

B =[4; 5; 6]

Try adding, subtracting and multiplying these two arrays. Examine the error when you try to multiply them.
At this point you will need to transpose one of the arrays if you want to carry out a matrix multiplication
A’
Exercise: Multiply element-by-element by each other.
Exercise: So how do we plot a function such as:

MATLAB File input and output
Let’s create some data and read it back:
% Sample ID Percent SiO2 percent Ca
1			53			2
1			50			3
1			59			1

Example commands in MATLAB
Type commands on the command line.
To view command history, type “h” or select command history under the desktop tab.
You can open several windows at a time to view different figures.
To tell MATLAB to search for files in directories outside of MATLAB, need to set up pathway manually:
File Set Path Add Folder
To run a program:
Debug F5 Run
To create a vector array:
A = [1 2 3] or B = [1; 2; 3]
w/o semicolon will create a 1 row x 3 column matrix:	
 A =	1	2	3
w/ semicolon will create a 3 row x 1 column matrix:
1
 B = 2
3
To transpose a vector, type the variable name followed by ‘ (as in A’ or B’)
Transposing a 1r x 3c vector will create a 3r x 1c vector and vice versa, which can be useful to make matrices compatible for certain algebraic operations
Type the variable name to spit out the array stored in memory
Type clear followed by the variable name to clear memory (as in “clear A”)
Or type “clear all” to clear all variables stored
Type “size A” to view the dimensions (# of rows and columns) in array A
Type “length A” to view the length (total # of values) of array A
To view all stored variables:
Desktop Workspace

Plotting Vectors and Simple Matrix Algebra
To plot one vector vs. another type “plot (A, B)”; the vectors must have the same length but not necessarily the same dimensions
To experiment with line style and color in plots try typing (the possibilities are endless):
Plot (A, B, *)
Plot (A, B, --)
Plot (A, B, r)
Plot (A, B, :r)
To add two matrices simply type “A + B”; the vectors must have the same dimensions
i.e. you can add a 1r x 3c array and a 1r x 3c array
To multiply two matrices simply type “A * B”; the vectors must have the same transposed dimensions as each other
i.e. you can multiply a 1r x 3c array and a 3r x 1c array
To multiply two vectors w/ the same dimensions, typing “A .*B” will override the rules of matrix algebra

Creating Files in MATLAB
To create new file, click New M-File (blank page icon at top left corner)
% sign tells editor to ignore that line (just as # sign in vi editor)
To save file, click save as and select desired destination
To load file, type “load filename” on command line
Type just the name of the file on the command line to view data stored in the file
To plot data in a file, first assign variable names to a particular row or column, i.e. for a file named “geochem”:
Ca = geochem (:, 3) all rows in 3rd column
Si = geochem (:, 2) all rows in 2nd column
Plot (Si, Ca)
·
Useful MATALB FUNCTIONS
	NAME
	Purpose

	size (variable)
	gives you the amount of rows and columns in an array

	length(variable)
	gives you the length of an array

	x = [value1,value2]
	assigns values to an array

	x *x
	multiply matrix arrays

	x .* x
	multiply element-by-element in two arrays for all elements

	
	

	
	

MATLAB – creating a spike (Stealth Fourier Theory)

Aim
To review the following MATLAB functions: (1) size, (2) length, (3)plot, (4)array creation, (5) axis values, (6) for loops
Exercise: Create a spike by adding up a very large number of cosine curves

Theoretical Background
Theoretically a spike is also called a delta function:

[image:]
The amplitude spectrum of a spike is flat.

Seismological Applications
Seismologists can create a seismic source by (1) generating an impulse of energy (all at once) or by (2) gradually introducing the energy into the ground across a range of frequencies.
Procedure
In order to learn more about a Delta function let’s begin by examining the following function:

In MATLAB, let’s begin by examining the effect of changing f(requency), t(ime) and ph(ase) on different plots.

STEPS
· Plot the function for f=1 Hz
· Overplot the function for f=2 Hz
· Do the same for 4 Hz, up to 10 Hz
· Apply a positive phase and a negative phase of pi/2 radians

To do the following lesson, you should download spike.m from ctg08/progs/matlab on the odyssey server.
Once downloaded, you need to remember to set the path via the file menu so that MATLab knows how to find your file.
The goal of the lesson is to provide an example of Fourier Theory – that many frequencies of a signal to summed together act as a single pulse. For seismic, it’s like the equivalence of using an explosion or using a truck to put in varying frequencies into the ground which sum to basically be an explosion (or chirp).
Important Functions (code is in bold)
% is used before a piece of code or sentence to “comment” it out
How to make arrays f = 1:10 will create an array of 1 through 10 by 1s, 1 row 10 columns
 F = 1:.5:10 will create an array of 1 through 10 by .5s
Plot(x,y) plots one array with respect to another
Hold on;: Keeps graphs on the screen; allows more than one graph to be displayed
Hold off;: Stops graphs from overlapping
For loops: for f=1:2 will run a for loop incrementing f by 1; for f =1:.1:10 will run a loop incrementing f by .1. To end a for loop, type end.
For example:
for f=1:2
%code inside of loop
end

size (variable) provides the length of a multidimensional array
length (variable) provides the length of a 1D array
It is also important to note, to multiply by a constant, put a period after the variable letter f.*
clear all; clears all stored variables (and arrays)
As a reminder, adding a semicolon after a piece of code will hide it from the command window, but leaving it will show it (ie if you want to see what’s going on don’t type a semicolon).

The program using cosines
% create your time array
t = -10:.05:10

% grab the size of the time array and initialize your y array with 0s
b = size(t)
y = zeros(b)

% run a for loop to add multiple frequencies of cosine together
for f=1:200
 y1 = cos(2 * pi *f .* t)
 y = y + y1
end

% plotting
plot(t,y/200)
axis([-1 1 -1 1])

press F5 to run your program.

Exercise: What do you get when you add up a very large number of cosine curves?

[bookmark: References][bookmark: _Toc211151912]References

Albing, C., Vossen, J., and Newham, C., 2007, bash cookbook: Sebastapol, CA, O"Reilly, 598 p.

TOC	4
image2.wmf

oleObject1.bin
[image: image1.png]local machine remote machine
xhosts seten DISPLAY localhost:100

image3.wmf
3

yx

=

oleObject2.bin

image4.wmf
;1

;0

()

ta

ta

ta

d

==

¹=

-

oleObject3.bin

image5.emf
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

radians

normalized

amplitude

image6.wmf
cos(2)

yftph

p

=-

oleObject4.bin

image7.wmf
sin(2)

yft

p

=

oleObject5.bin

image1.png

