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INTRODUCTION 

As we try to visualize the earth seismically we make certain physical simplifications that make it 
easier to make and explain our observations.  Liner (2004, p.33) considers three types of simplified 
descriptions for the earth materials: fluid, porous and solid.   

Fluids, e.g. gases and liquids characteristically can deform only by compression and 
decompression.  Only acoustic, or sound, or P-wave or compressional body waves are the natural wave 
vibrations that can propagate through fluid earth materials.     

In solids we can simplify P-waves via an acoustic model so as to ignore the effect of coupling to 
shear stresses  (p.55, Ilke and Amundsen).   Note that in this case the shear modulus still remains as 
one of the Lamé’s parameters .  For liquids the shear modulus is 0 and for solids it is non-zero.  

In a fluid, seismic data can be collected by hydrophones in the form of pressure measurements.  
The pressure field is a scalar field, which is simpler to deal with mathematically, than a tensor field. 

From the following mathematical derivations we can reach several accurate concepts to help us 
visualize particle strain during acoustic wave transmission in a fluid.  

• First, within a fluid, and at a given point, particle motion increases as the pressure gradient 
increases.   

• Second, the larger the particle density the slower the particle acceleration. Note that an 
unweathered piece of granite is denser than a piece of slate from a blackboard and so based ON 
ONLY the property of its density particle acceleration will be smaller in granite than in slate. [Q] 

• Third, the more incompressible the fluid the faster the particle motion.  A fast particle motion is 
related with a fast transmission of mechanical vibration through the fluid.  If we use the ball and 
spring model this implies that as we substitute stiffer and stiffer springs in the picture particle 
motion is faster and the vibration or wave is able to cross between balls at a faster rate (“speed of 
sound”). 

On the Acoustic Wave Equation 

Most people would say the speed of sound increases as the density of the material that 
sounds travels through. For example, sound waves travel faster in the water of the swimming 
pool than by shouting above the water.  Yet, the acoustic equation of motion implies the 
opposite.  Explain why the speed of sound is so much greater at the center of the earth than 
in the crust near the surface of the earth in terms of the acoustic wave equation and its 
physical implications. 

On Hydrophones versus Geophones  

Q. 1 On land seismic surveys data is collected by devices that are able to convert ground 
velocity or acceleration into a voltage.   In marine settings seismic streamers tow only 
hydrophones which are arrays of pressure transducers.   Since acoustic waves produce 
particle motion in fluids shouldn’t we be able to use 3-component geophones in fluids as 
well as pressure transducers?  Think through and explain why you think hydrophones are the 
choice for marine acquisition work.  



Q.2 A seismic acquisition company is currently marketing digital 3-compnent 
accelerometers as a substitute for 3-component geophones.  What is the advantage of using 
an accelerometer over a geophone for a seismic land-based survey? 

 

Mathematical Derivation 

We saw in the section on tensors that 

 i j jiσ=T n  

The total force ),,( 321 FFFF =


  exerted by the medium on to the volume V through the small 
surface given area is 

 i ji jF n dAσ=      where    ji jnσ  is force per unit area (pressure) (1) 

   

For example in a fluid:  

  ijij Pδσ −=  

.    (2) 

where P is pressure and where compression is by convention negative.   

Expression (2) can also be expressed as 
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Note that we can view the Kroneker delta as a second order tensor where there are NO off-
main-diagonal components because there is no shear, i.e.  

  iiij σσ =  

So now combining (1) and (2) we have 

  
dAPn

dAnPF

i

jiji

−=

−= δ
  

that is, in vectorial notation, dAnPF ˆ−=


. 

If there is no gradient in the pressure there is no net force acting on it.  For example a neutrally 
buoyant sphere will neither rise nor fall  immersed in a fluid.  

   

 

 

BULK MODULUS AND LAMÉ’S PARAMETERS 

We aim to show that how the bulk modulus is related to Lamé’s parameters 

Previously, in dealing with the elastic wave equation we saw that Hooke’s law for the case of an 
isotropic, heterogeneous medium took on the form 
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  ijkkijij ee µλδσ 2+=   

 

and the scalar expressions that related the strain field to the gradient of the displacement 
field or the dilatation were as: 

  
V
Vuue kkkk

∆
=⋅∇==


,  

(The volumetric strain is the same as the sum of the linear strains in each of the principal directions if 
the deformation is small, as in the case of ideal elasticity.  (Proof of this relation is given to the reader to verify, 
until we demonstrate this approximation in class) 

For a hyrdrostatic pressure field where P−=== 332211 σσσ we can rephrase Hooke’s Law. 
substituting (2) to obtain : 

  ijkkijij eeP µλδδ 2+=−  (3) 

We contract the indices, making ji = in order to consider only the non-zero contributions to 
the sum: 
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By replacing terms with other equivalent expressions, noted immediately above, 
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In this form, we can show that the bulk modulus (
Pk V

V

∆
∆= − ) can be expressed in terms of 

Lamé’s parameters:  
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In the acoustic case, we have that 0=µ and k λ= , so that equation (3) can  be re-expressed as  

    

            
Vk u k

V
∆

= ∇ =   (4) 

from which we see that the divergence of the displacement field is proportional to the 
pressure. 

 

Particle acceleration and its relation to density the pressure field and wave velocity 

We can predict the different parameters in the equation of motion: 
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  (non-zero components only exist for j=i)  

In vectorial notation we can also express this as 
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   (5) 

In this form the equation of motion tells us that the particle acceleration in a body increases with 
larger gradients in the pressure field but decreases as the material becomes denser and requires more 
energy to move.   

We can also estimate how pressure changes in space can affect the particle acceleration, by taking 
the divergence of the above expression. 
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