
 
 
  ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM 
 
 

Herein, we will deal mainly with the humble wave equation, 

2u u∝∇




  

, where u is the displacement, and 2∇ is the Laplacian operator. 

 
Laplacian = “∇⋅∇ ”= “del dot product div” 
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A conceptual, physical interpretation of this equation can be that the acceleration experienced by 
the passing of a wave is a function of the difference between the local and average surrounding 
displacements (Laplacian).  

In other words, the spatial derivatives of the strain (which is a spatial derivative of the 
displacement) are proportional to the stress the material is experiencing. 

The stress that the material experiences constant of proportionality depends on the speed of the 
wave through the material (see the potential expressions at the end of the chapter) 

An elastic wave is a deformation of the body that travels throughout the body in all directions.  
We can examine the deformation over a period of time by fixing our look on just one point in space.  
This is the case of fixing geophones or seismometers in the field, or Eulerian description. 
 

We will begin by a simple case, assuming that we have (1) an isotropic medium, that is, the elastic 
properties or wave velocity, are not directionally dependent and that (2) our medium is continuous.  
By examining a balance of forces across an elemental volume and relating the forces on the volume 
to an ideal elastic response of the volume using Hooke’s Law we will derive one form of the elastic 
wave equation. 
 

Let us begin by examining the balance of forces and mass (Newton's Second Law) for a very 
small elemental volume.  The effect of traction forces and additional body forces ( f



) is to generate 

an acceleration ( u


 ) per unit volume of mass or density ( ρ ): 
  ijiji fu += ,σρ  , (1) ->To Acoustic Wave Equation 

 
where the double-dot above u , denotes the second partial derivative with respect to time 
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(Note that a dimensional analysis confirms this statement) 
The deformation in the body is achieved by displacing individual particles about their central 

resting point.  Because we consider that the behavior is essentially elastic, the particles will eventually 
come to rest at their original starting point.  Displacement for each point in space is described by a 
vector with a tail at that point.  
  ),,( 321 uuuu =



  

Each component of the displacement, iu depends on the location within the body and at what stage 
of the wave propagation we are considering.   
 
Density ( ρ ) is a scalar property that depends on what point in 3-D space we consider: 

),,( 32 xxxρρ = or, in other words 

  )(),,( 321 xxxx ρρ =  
 
Body forces such as the effect of gravity are discarded.  The homogeneous equation for motion 
(1) states that the acceleration a particle of rock undergoes while under the influence of traction 
forces is proportional to the stress changes across its volume: 
 
  (for j=1,2,3) 
Each basis vector component of the acceleration, as for example 1=i , is expressed as 
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Finally, in complete indicial notation: i ij , j=u σ , for  a given elemental volume. 
 
Remember from the chapter on strain that the infinitesimal deformation at each point depends on 
the gradients in the displacement field: 
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(substituting, p for i and q for j) 

Empirically, it has been shown that for small strains (e.g., 510− ), and over short periods of time (e.g., 
Lay and Wallace, 1995) rocks behave as ideal elastic solids.  The most general form of Hooke’s Law 
for an ideal elastic solid is: 
  ij ijpq pqc=σ e     (4) 

where ijpqc is a fourth-order tensor (3 dimensions) containing de 34=81 elastic constants or matrix 
components that define the elastic properties of the material in the an anisotropic and 
inhomogeneous medium.  Each component ijpqc or elastic constant has dimensions of pressure.  

Each component ijpqc  is independent of the strain ije and for this reason is called a ‘constant’ 
although elastic constants vary throughout space as a function of position. 

We can reduce the number of constants to two in various steps.  First, we can reduce the 
number to 36 because it follows that since ijσ  y ije  are symmetric: 



    ijpqjipq cc = and ijpqijqp cc = . 

That is, adjacent the first two indices can be interchanged and the last two indices can be 
interchanged as well. 

Through thermodynamic considerations (Green, 1838,1839; in Pujol, 2013) it was 
demonstrated mathematically and eventually through experimental support of the original arguments 
that 

  ijpqpqij cc =  

That is adjacent pairs of subindices can be interchanged 

so that even in the case of anisotropy the number of constants can be reduced to 21 (Cauchy and 
Poisson had estimated them to be 15 at one time (Pujol, 2013))  However, it is possible to often solve 
many geological problems by considering that rocks have isotropic elastic properties. The assumption 
of isotropy reduces the number of independent elastic constants to just 2.  In summary for an 
isotropic, continuous medium we can reduce the elastic constant tensor to the following: 

  )( jpiqjqippqijijpqc δδδδµδλδ ++=    (5) 

where λ y µ are known as the Lamé elastic parameters or properties.  Lamé parameters λ y µ can 
be expressed in terms of other familiar elastic parameters such as Young’s modulus E  and Poisson’s 
ratio σ : 

  
)21)(1( σσ

σλ
−+

=
E

;
)1(2 σ

µ
+

=
E

 

Other elastic parameters can also be expressed in terms of λ yµ ( also known as Lamé’s first and 
second parameters.  For example, incompressibility K relates the change in pressure surrounding a 
body to the corresponding relative change in volume of the body: 
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Substitution of equation (5) into equation (4) shows that traction forces and strain are related 
for an isotropic medium in the following manner: 

  ( )[ ] pqjpiqjqippqijij eδδδδµδλδσ ++=  

       pqjpiqpqjqippqpqij eee δµδδµδδλδ ++=  

If we add over repeated subindices: 
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From the definition of a Kronecker delta, the only terms that will be non-zero and contribute to the 
stress tensor will be those which have their subindices equal to each other.  That is for the second 
term on the right of the equals sign, values exist if ip = and jq = .  Similarly, for the third term on 
the right of the equals sign values exist if jp = and iq = .  With this simplification we arrive at: 

       jijjiiijjjiikkij eee δµδδµδλδ ++=  

Because the deformation tensor is symmetric jiij ee = leading to the result that 

  ijkkijij ee µλδσ 2+=  (8a)  ->To Acoustic Wave 
Equation 

In experiments we observe displacement, ground velocity and acceleration so it makes sense to 
express the stresses in terms displacements,  
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, ( where V∆ is the relative change in volume, for infinitesimal 

deformations) 

We obtain the wave equation for displacements in a general isotropic medium by substituting 
(8b) into the equation of motion 

  ijiji fu += ,σρ


  (1) 
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 ij k ,k , j , j i , j j ,i i , jj j ,ij i( u ) ( u u ) ( u u ) fλδ µ µ= + + + + + ,   



 , j ij k ,k ij k ,k , j , j i , j j ,i i , jj j ,ij iu u ( u u ) ( u u ) fλ δ λδ µ µ= + + + + + +  after expansion 
using the product rule.   

Let us take each of the terms on the right hand side separately to demonstrate the application of 
indicial notation.  For each term I, only the case where j=i can contribute in the Kronecker delta, so 
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  jjiu ,,λ≡   

because we can interchange the repeated k’s by repeated j’s because they both signify summation 
over the range of values for j; i.e., 1 through 3. 
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After some algebra we show that an alternative expression can be obtained by adding  (9) 
vectorially from 3,2,1=i  to arrive at: 
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 +∇•∇+×∇×∇+•∇∇+∇+•∇∇+= µµλµµλρ 22  (10) 

Two fundamental body wave types: P waves and S waves 

From the equation of motion (10) in vectorial form, we can demonstrate (Poisson, 18..), that in an 
infinite, elastic, and isotropic, homogeneous medium two types of particle motion associated with 
traveling trains of deformation can be predicted. 

Since λ and µ are constant in a homogeneous medium, we have that λ∇ and µ∇ both equal zero 
because there are no spatial changes in their values.  This leaves: 
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But, we can use the identity: 
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 (11) 

Through the Helmholtz theorem (aka fundamental theorem of vector calculus), the displacement 
vector field can be decomposed into two independent component fields: a scalar field together with a 
vectorial field.   

  u Θ Ω=∇ +∇×


  



The first term on the right (scalar) is non-rotational and the second term (a vectorial field) is 
rotational. The scalar field of displacement can not experience rotations and the vectorial field can 
not experience a divergence.  In other words 

  ( ) 0"" ≡∇×•∇ vector   (identity 2) 

  ( ) 0"" ≡∇×∇ scalar ,   (identity 3) 

Now, if we take the divergence of (11) we can simplify the whole expression. The second term on 
the right becomes zero because u×∇  is a vector quantity, and its rotational is zero (identity 2):  

  
( ) ( )[ ]

( ) ( )( )µλρ

µλρ

2

2

2
2

2

2

2

+•∇∇=
∂
•∇∂

•∇∇+∇=







∂
∂

∇

u
t

u

u
t
u









 

We can change variable names by defining a new scalar field variable u•∇=Θ so that the 
immediately preceding expression looks like, (a.k.a.) the scalar wave equation: 
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 (similar to Ikelle and 

Amundsen’s Eq. 2.163)
 

In order to propagate this type of deformation through the medium the body must expand and 
contract (divergence is non-zero).  This portion of the displacement field can not have a rotation 
component; only a divergence component. 

One solution to this scalar wave equation is to make  

  PVΘ = =
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ρ
+
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Note that the integral of the potential is also the integral of the velocity or simply the displacement.
 

Now, if we take the rotational of the general equation of motion (11) i.e., 



  

Because u•∇  is a scalar field and the rotational of the gradient of this field is zero (identity 3). So, 
the first term on the right of the equation goes to zero: 
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We can now change variable names by defining a new vector field variable u


×∇=Ω so that the 
immediately preceding expression looks like: 
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(similar to Ikelle and Amundsen (2005) Eq. 2.164)
  

because the first term goes to zero since the divergence of the rotational of Ω


is zero (identity 2). 

One solution to this vector wave equation is to make  

   SV µ
ρ

Ω = =


 

The separation into different wavefields is useful to know for practical reasons.  If a full 3-
component, 2-D array of geophones can record a wavefield, then the wavefield can be broken out by 
separating the field into the transverse waves and the compressional waves.  The divergence of the 
full 3-C, 2-D array data set would leave behind only transverse waves.  The curl of the same data set 
would leave behind only compressional waves.  Of course, the wavefield can not be separated out 
completely  because our 3D experiments collect data over a 2-D grid so that the partial derivatives in 
the z direction may have to be considered as constant. 

 

 

In Summary, we have seen that  
(1) the strain is related to displacement field by the following relationship 
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(2) and that Newton’s second law provides the following relationship between particle acceleration and 

stress:  

 i ij , jσ=u
 

 
(3) Also, Hooke’s Law can be written as: 

  ijkkijij ee µλδσ 2+=
 

(4) 
Finally, when we substitute Hooke’s Law into Newton’s Law through the expression of stress as a 
function of displacements we can eventually find the solution to two wave equations that give us the 
speed of propagation of two waves through elastic, isotropic material:
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Appendix for section on the wave equation  ->Back to text 

In this section we state that vectorial manipulation of the expression: 

IVIIIIII

fuuuuuu iijjijjjijjiijj ++++++= )()( ,,,,,,, µλµµλρ




 (9) 

for 3,2,1=i  leads to the alternative expression:  
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In order to show the steps in detail, let us examine each of the terms I  through IV on the right 
hand side of equation (9).   

Starting with I :  e.g., when k=1,2,3, for commutative partial derivatives 
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For II :  
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For III 
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