Voigt Notation for Reducing the Dimension of a Tensor

In matrix form, we can use also use the Voigt notation to write out the non-diagonalized isotropic stiffness tensor where the stress and strain can be represented as a six-component vector rather than a nine-element square matrix:

Additional simplification of the stress-strain can be realized through simplifying the matrix notation for stresses and strains. We can replace the indices as follows:

$\left(\begin{array}{lll}11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 6 & 5 \\ 6 & 2 & 4 \\ 5 & 4 & 3\end{array}\right)$

Voigt Notation

Isotropic stress tensor

$$
\left(\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{array}\right)=\left(\begin{array}{cccccc}
2 \mu+\lambda & \lambda & \lambda & 0 & 0 & 0 \\
\lambda & 2 \mu+\lambda & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & 2 \mu+\lambda & 0 & 0 & 0 \\
0 & 0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & \mu & 0 \\
0 & 0 & 0 & 0 & 0 & \mu
\end{array}\right)\left(\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\varepsilon_{5} \\
\varepsilon_{6}
\end{array}\right)
$$

where, $\boldsymbol{\varepsilon}_{I} \Leftrightarrow\left(\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6}\end{array}\right) \quad$ and, $\quad e_{i j}=\left(\begin{array}{ccc}\varepsilon_{1} & \frac{1}{2} \varepsilon_{6} & \frac{1}{2} \varepsilon_{5} \\ \frac{1}{2} \varepsilon_{6} & \varepsilon_{2} & \frac{1}{2} \varepsilon_{4} \\ \frac{1}{2} \varepsilon_{5} & \frac{1}{2} \varepsilon_{4} & \varepsilon_{3}\end{array}\right)$

Recall that: $e_{i j}=\left(\begin{array}{lll}e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33}\end{array}\right)$

Anisotropic stress tensor

If we assume the anisotropy to be weak in a medium then we can approximate the stiffness matrix as the following. As most sediments consist of clays, the symmetry of clays is a good first approximation to the seismic symmetry seen in nature, or the Transverse Isotropy with a vertical axis of symmetry, or VTI (Tsvankin, 2012)

$$
\left(\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{array}\right)=\left(\begin{array}{cccccc}
c_{11} & c_{11}-2 c_{66} & 0 & 0 & 0 & 0 \\
c_{11}-2 c_{66} & c_{13} & 0 & 0 & 0 & 0 \\
c_{13} & c_{13} & c_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{55} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66}
\end{array}\right)\left(\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\varepsilon_{5} \\
\varepsilon_{6}
\end{array}\right)
$$

Voigt notation helps us handle the $2^{\text {nd }}$ order stress and strain tensors even when we have 6 elastic constants (note that one is a linear combination of the other two) as is with the case of anisotropy

