
Voigt Notation for Reducing the Dimension of a Tensor 
 In matrix form, we can use also use the Voigt notation to write out the non-diagonalized isotropic stiffness 
tensor where the stress and strain can be represented as a six-component vector rather than a nine-element 
square matrix: 

Additional simplification of the stress-strain  can be realized through simplifying the matrix notation for 
stresses and strains.  We can replace the indices as follows: 
 

 

 

 

 

 

 

 

    

 

 

 

Isotropic stress tensor 
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Voigt Notation 
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Recall that:  
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Anisotropic  stress tensor 
 
If we assume the anisotropy to be weak in a medium then we can approximate the stiffness matrix as 
the following.  As most sediments consist of clays, the symmetry of clays is a good first 
approximation to the seismic symmetry seen in nature, or the Transverse Isotropy with a vertical axis 
of symmetry, or VTI (Tsvankin, 2012) 
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Voigt notation helps us handle the 2nd order stress and strain tensors even when we have 6 elastic constants 
( note that one is a linear combination of the other two) as is with the case of anisotropy  
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