
DIAGONALIZATION OF THE STRESS TENSOR 

 

INTRODUCTION 

By the use of Cauchy’s theorem we are able to reduce the number of stress components 
in the stress tensor to only nine values.  An additional simplification of the stress can be 
achieved through diagonalization of the stress tensor.   Diagonalization of the stress tensor 
reduces the number of components to only three.  Many square matrices can be 
diagonalized. 

In this simplified (diagonalized) version of the stress tensor, the principal planes have no 
stress along them and the principal axes are the only directions along which we have any 
stress.  The principal axes directions are orthogonal to the principal planes. 

That is, we start with a general matrix: 
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And end with a simpler matrix: 
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The last matrix has been diagonalized.  The resultant matrix is easier to handle.  For 
example, the square of the diagonalized matrix is simply the square of each of the 
components. 

Recall Cauchy’s Theorem that states: 

 i ji iσ=T n  

Where T is the traction/stress vector at a point on a plane with normal vector n 

T the stress tensor is symmetric.  

 

Definition 

A square matrix , M, can become diagonalized into another matrix, D by derivingC , so 
that 



 -1D = C MC  

In the case that M is the stress tensor, D becomes a description of the same stress field 
from the perspective of a new, rotated co-ordinate system. From the point of view of this 
new stress matrix M is the stress described in the old co-ordinate system.  So, in different 
words diagonalization gives the components of stress in a new, rotated coordinate system. 

That is, we start with a general matrix: 
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and end with a simpler matrix: 
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Components are not the same before and after the diagonalization. The variable name is 
the same but the values are different. 

When a matrix is diagonalizable, it means that the three basis vectors in the new 
Cartesian coordinate system are parallel (in the general case) to three non-basis traction 
vectors in the old coordinate system.  These special three vectors formerly in the old 
coordinate system have new components in the new coordinate system.  These new 
components are the rows of the new (diagonalized) stress tensor.   Diagonalization requires 
us to find these vectors. 

 

Eigenvalues and Eigenvectors 

In other words, this means that: 

 1x̂ ||′ U  and 2x̂ ||′ V and 3x̂ ||′ W  

where the basis vectors are in the new coordinate system (primes) and are parallel to vectors 
that were formerly in the old coordinate system.  The new basis vectors and their 
corresponding former selves are called eigenvectors.  We can express this another way: 

 1µ′ =U U ,  



 2µ′ =V V , 

 3µ′ =W W  where µ1, µ1, and µ3, are constants, known as eigenvalues. 

 

Let’s take a simple example and consider only vectors in a 2-coordinate system that are 
acted upon by some matrix that we wish to diagonalize (our target). 
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The simultaneous solution to this problem is given by Cramer’s Rule: 
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 to obtain solutions to U1 

This is also known as the characteristic equation of matrix M 

You should work out that µ1 can have two values: 6 or 1 

When µ1=1 then we have  
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These are 



DIAGONALIZATION OF THE STRAIN TENSOR, AN EXAMPLE 

We will look at the diagonalization of strain instead of the case of stress as this will lead 
us in to the next section. 
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How to find the eigenvalues and eigenvectors of a symmetric 2x2 
matrix 

 

Introduction 

 

We will leave the theoretical development of eigensystems for you to read in 
textbooks on linear algebra or tensor mathematics, or from reliable sources on the web 
such as those listed in the references section at the end of this document.  Here, we accept 
that for any given stress or strain tensor, a coordinate system can be identified in which 
all of the shear stresses or shear strains have zero value, and the only non-zero values are 
along the diagonal of the tensor matrix.  The eigenvectors are parallel to those special 
coordinate axes, and the eigenvalues are the values along the diagonal.  Another way of 
characterizing them is that the eigenvectors are along the principal directions of the stress 
or strain ellipsoids, and the eigenvalues are the magnitudes of the principal stresses or 
strains. 

Let’s call the square matrix we are analyzing matrix M.   

M =  

We want to find all possible values for a variable we will call λ that satisfy the 
following characteristic equation: 

det(M – λI) = 0,  
or using another common symbol for determinant, 

 = 0, 

Matrix I in the preceding equations is the identity matrix 



(I =  if M is a 2x2 matrix) 

and variable λ is an eigenvalue.  Then 

(M – λI) =  

The characteristic equation is 

 

This determinant can be unpacked as the equation 

((d – λ)(g – λ)) – (f e) = 0 

or, simplifying, 

λ2 − ((d +g ) λ ) + ((d g ) −  (f e))  =  0. 

The result is a quadratic equation.  You might remember how to solve a quadratic 
equation from deep in your childhood.  In case you don’t, the general solution for the 
quadratic equation 

(a x2) + (b x) + c = 0 

is 

 

This expression, which is known as the quadratic function, yields two answers for x 
that satisfy the quadratic equation.  In our case, the equivalent terms in the quadratic 
function are 

a = 1 

b = −(d + g),  

noting that [−(d + g)]2 = (d + g)2, and  

c = ((d g) − (f e)) 
Consequently, the eigenvalues are given by the quadratic function 



 

or, somewhat simplified, 

. 

We now have two values of λ that satisfy our quadratic equation, and these are the 
two eigenvalues of our 2x2 matrix.  We will refer to the larger eigenvalue as λ1, and the 
smaller eigenvalue is λ2. 

Now we need to find the eigenvectors that correspond to λ1 and λ2, respectively.  
Returning to our example using matrix M, we have the following equation to solve to 
find the eigenvector associated with λ1 

, 

which can be restated as 

((d – λ1) x1) + (e y1) = 0 and 

(f x1) + ((g – λ1) y1) = 0. 

The best we can do with these two equations and their two unknown values (x1 and 
y1) is to determine how one of the unknowns relates to the other.  In other words, we can 
determine the slope of the vector.  If we arbitrarily choose x1 = 1, we can rearrange either 
or both of the previous equations to determine the value of y1 when x1 = 1: 

 

or 

 

An eigenvector that corresponds with eigenvalue λ1 has the following coordinates: 

 
The length or norm of that vector is 



 

Recalling that a unit vector is a vector whose length is 1, we can find the unit vector 
associated with any vector of arbitrary length by dividing each component of the initial 
vector by that vector’s length or norm.  The unit eigenvector that corresponds to 
eigenvalue λ1 is 

 

We repeat the process to find the coordinates of the unit eigenvector that corresponds 
to eigenvalue λ1. 

 

Worked example. 

Given the matrix M below, calculate the eigenvalues and the corresponding unit 
eigenvectors. 

 

Solution. 

The eigenvalues are  

 

and 

 

We refer to the larger eigenvalue (8.16228) as λ1, and the smaller (1.83772) is λ2.  An 
eigenvector associated with λ1 is 



. 

The unit eigenvector associated with λ1 is found by dividing the individual 
components of the previous vector by the vector’s length 

 = {0.811242, 0.58471} 

An eigenvector associated with λ2 is 

 

and the corresponding unit eigenvector associated with λ2 is 

 = {0.58471, -0.811242} 

 

 

In the specific case in which we have a 2-D Lagrangian strain tensor 

 

the eigenvalues are given by 

. 

The larger eigenvalue is λ1, and the smaller eigenvalue is λ2.  An eigenvector 
corresponding to λ1 is 



, 

and an eigenvector associated with λ2 is 

. 

The unit eigenvectors can then be determined by dividing each of the components of 
these vectors by their length or norm.  The unit eigenvector associated with eigenvalue λ1 
is  

 

The unit eigenvector associated with eigenvalue λ2 is 

. 
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