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1. DIFFERENT PHYSICAL MODELS FOR THE EARTH 

In seismology we are primarily interested in the use of the wave equation at 
a sophisticated level.  When we say the elastic wave field we describe the elastic 
behavior of earth materials to the passing of a wave by how fast they oscillate 
(Hz) and how much they move (amplitude in m) and the speed or acceleration 
with which they mover.   

Although we are going to emphasize the mechanical properties of the earch 
in this course, 1uite often seismology alone is insufficient to understand a 
physical process in the earth and other physical models for the earth are 
required.   

We talk of the electromagnetic field as a description of electrical and 
magnetic properties (measurements) within a given space.  Electromagnetic 
models employ Maxwell’s equations and give us a simplified view (model) of 
the earth in terms of some of these measured properties such as electrical 
conductivity.   

A third manner of observing the world is to model the behavior of moving 
fluids through its connected pores.  For this objective we employ the diffusion 
equation.   

Other views of the earth exist based on how heat flows, how the lithosphere 
bends, and based on the distribution of the density of matter. 

We talk of the gravitational field to describe gravity values and the direction 
of this force throughout a given body in space and time.   



 

(adapted from Hadsell and Wiley, 1995) 

 

1.2 Homogeneity, Isotropy 

The field can also be described as isotropic when the properties at a location 
do not perceptibly change with the direction we consider. 

The field can be considered non-homogeneous/heterogeneous when the 
property changes with either the spatial or temporal coordinate. 

In the earth, vertically, the composition changes with depth, so we say that 
the earth is heterogeneous in a 1D sense. 

In the earth, if the composition changes with depth and horizontally we say 
that the heterogeneity is two dimensional. 



In reference to changes through time we also add a “dimension” in the 
description of the heterogeneity.  I guess that someone could refer to 3D 
heterogeneity as having two spatial dimensions and a third temporal dimension 
instead of the usual 4D reference that is normally read. 

 

 

 

(Josh et al., 2012) 

Shale, as the above SEM picture may appear more heterogeneous at a 
higher resolution.  The heterogeneity that systematically aligns grains in bands 
may set up an anisotropy at some given scale. 

 

 

2. FIELDS: SCALARS, VECTORS AND TENSORS 

Field:    Is a physical quantifiable property that can be defined over some n-
dimensional space 

SCALAR FIELDS: Density field, temperature field, salinity field, Poisson’s ratio 
field, shear modulus field, Young’s modulus field 

VECTOR FIELDS: Velocity field, Heat flow field, diffusivity of sediment field, 
gravity field, displacement,  



TENSOR FIELDS: Stress, strain, thermal conductivity 

 

2.1 Scalar and vector properties 

Each different field of physical properties has a different complexity that 
can described with increasingly complex, and more general, mathematics.  If a 
property varies as a function ONLY of its position in space, i.e. 

  f(x1, x2,x3),=  

then the property and field is known as scalar. 

Vectors are quantities that have a directional property as well as a value in 
space.   With a vector we know HOW MUCH it is worth and whether this 
quantity acts in a certain direction.  A vector is described using three numbers.   

 

 

 

 

Figure 1: Three-
dimensional basis 
vectors are mutually 
orthogonal and are 
indexed following the 
right-hand rule 



   

Basis or unitary vectors in a cartesian co-ordinate system are mutually 
orthogonal (orthonormal) to each other, are of unit length and obey the right-
hand rule.  We can describe these vectors in several ways: 

1 1 2 2 3 3ˆ ˆ ˆV a x a x a x= + +


 

or 

i iˆV a x=


 

(If indices are repeated by convention we sum over them) 

 

2.2 Invariance of  Vectors under Linear Transformation  

A vector property is also a property that is symmetric.  That is, it does not 
matter whether these three numbers are different as measured with respect to 
different origins or frames of reference.  These different numbers will still 
describe the same physical behavior, of say, the wave field.  

Although it may seem obvious, certain physical laws do not change even if 
we modify our co-ordinate systems.  That is, if we have our origin in one place 
and observe a wave field but then we choose to describe the wave field from a 
different origin or a different fixed frame of reference the observation will be 
the same.  This wave field is symmetric. 

Symmetry: (paraphrase: Hermann Weyl: a thing is symmetrical when after 
undergoing mathematical operations it looks the same as when we started, e.g. 
rotation of a plain undecorated vase by 180 degrees) 

 

Example 1:  In hydraulic fracturing, one manner for determining the 
direction of the originating microseism is to rotate the coordinate system until 
the direction in which particle motion of a particular wave mode is maximized, 
also known as the ‘hodogram method’ . In (Maxwell et al., 2010). 

 



 

Guevara and Stewart, 1998. 

Example 2: For example, if a vector is describing the velocity of a wave field 
at the earth’s surface in a direction that is not perpendicular to the earth’s 
surface we may choose to more conveniently rotate the co-ordinate reference 
frame in line with the particle motion.  This happens in cases when studying 
anisotropy where we sometimes try out different rotations of the reference 
system until we maximize the wave energy coming from a particular direction. 

Counter-clockwise rotation of  a Cartesian Coordinate System (Left-handed 
system) 

 



  1 1

2 2

a' acos sin
a' asin cos

θ θ
θ θ

    
=    −    

or, more briefly expressed as 

  =V' TV ,  ->Proof of Invariance, using Indicial Notation 

where ′V is the vector after the transformation expressed in components in 
terms of the rotated co-ordinate basis vectors and V  is the vector before the 
transformation expressed in terms of components of the unaffected basis 
vector system. 

Let us show how that the above is indeed true: 

Before the co-ordinate rotation, the co-ordinates for V are: 

  1 cosa V α=


, and 2a V sinα=


 

After the co-ordinate rotation the co-ordinates for ′V are: 

  ( )1a V cos α θ′ = −


, and  

  ( )2a V sin α θ′ = −


.   

If we expand these two trigonometric functions using basic identities, we 
arrive at: 

  

1

1 2

cos cos sin sin

cos sin

a
V

a a
V V

α θ α θ

θ θ

′
= +

= +



 

, 

 and  

  

2

2 1

sin cos cos sin

cos sin

a
V

a a
V V

α θ α θ

θ θ

′
= −

= −



 

  

 , where the 1 1

2 2

a' acos sin
a' asin cos

θ θ
θ θ

    
=    −    

 



A common mistake in applying these rotational transformations, is to lose 
sight of whether we are rotating the vector itself with respect to a fixed co-
ordinate system or the other way around.  In the case above the counter-
clockwise rotation of the co-ordinate system produces a negative sign in front 
of the lower-left component. 

Be careful to distinguish rotation of a vector about a fixed co-ordinate 
system and rotation of the co-ordinate system, about the fixed vector.  Also be 
careful to note whether you are dealing with either a right-handed or a left-
handed system because the signs of several of the components will change.  
Also note that a counter-clockwise sense is determined with respect to the basis 
vector while looking in the direction of its tail toward its head. 

 

Proof of Invariance of Rotation Transformation Using Indicial Notation 

Q. Show that the dot product is invariant under a rotation transformation.  
Show that the following is equal: 

 V W V W′ ′⋅ = ⋅
   

 , or 

 i i i i′ ′=VW VW  (in indicial notation) 

Where the vectors in the new coordinate system, after the rotation are 
denoted using primes, and the vectors in the old coordinate system are plain. 

Start by noting from a previous section (-> ) that a rotation transformation 
is written as follows: 

  ′ =V TV  

and  i ij j′=V T V   (in indicial notation), where 

  ij

cos sin
sin cos
θ θ
θ θ

 
=  − 

T  i,j = 1,2 

Also note the correspondence between actual trigonometric values and the 
general indices, for later reference to this proof: 

  11 12

21 22
ij

 
=  
 

T T
T

T T
 



Then, if we use the same rotation tensor (Tij) , 

  i ij j′=W T W  

Now,   
( )

( )

( ) ( ) ( )

2

3 2

1

2 2 2
1 1 1 2 2 2 3 3 3

i i ij j ij j

ij j j

j

ij j j
j

i i i

=

=

′ ′=

=

=

= + +

∑

VW T V T W

T V W

T V W

T VW T V W T V W

 

The values for i also can be 1,2 or 3 as can the j values.  On the LHS we 
must add over the values of i  as per the summation convention, thus limiting 
the number of terms on the RHS to only 9 terms. 

  
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 2 2 3 3
2 2 2

11 1 1 12 2 2 13 3 3

2 2 2
21 1 1 22 2 2 23 3 3

2 2 2
31 1 1 32 2 2 33 3 3

i i′ ′ ′ ′ ′ ′ ′ ′= + +

= + +

+ + +

+ + +

VW VW V W V W

T VW T V W T V W

T VW T V W T V W

T VW T V W T V W

 

Remember that, since the rotation is only two-dimensional, some of the 
terms do not exist. We now have that, 

 
2 2 2 2
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21 22
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θ θ
θ θ

   
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  
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1 1 2 2

2 2
1 1 2 2

1 1 2 2

i i

i i

cos sin
sin cos

θ θ

θ θ

′ ′= + +

+ + +
= +
=

VW VW V W
VW V W

VW V W
VW

 

(QED) 

 



Here is a 3-D example of a three-dimensional rotation, for rotation of the X 
and Y axes about the Z axis (fixed) in a counter-clockwise direction (for a left-
handed system): 

 
0
0

0 0 1

cos sin
sin cos
θ θ
θ θ

 
 − 
  

  

We can generalize the rotation into three dimensions. Any arbitrary rotation 
of an old Cartesian coordinate system into a new one can be accomplished with 
3 angles, known as the Euler angles (Box 2.4 in Ilke and Amundsen, p.28) 

In all cases, the length of the vector remains unchanged, although it has new 
co-ordinate values 

An important use in earthquake seismological for the rotation of a coordinate 
system, involves restoring the inclined measurements in an STS-2 seismometer,  
This seismometer has 3 orthonormal sensors, arranged in a corner-cube 
geometry whose edges lie at 35.3 degrees from the horizontal (Wielandt, 2009) 
(from Figure 5.13), or 54.7 degrees from the vertical. 

 

2 1 1
1 0 3 3
6

2 2 2

x u
y v
z w

−    
    = −    

          

(Fig 5.13, Wielandt, 2009) 

 

 



2.3 Vector multiplication  

Vectorial multiplication is of two types, and both can produce either  a 
scalar or a vector on output.  There are different names you will see for each 
such as: 

A scalar product, dot product, • , or inner product, when applied to two 
vectors produces a scalar. 

A scalar product between the ‘del’ operator (gradient or grad) and a scalar 
field, i.e.,  ∇

 (scalar) produces a vector field. 

A scalar product between ‘del’ operator (divergence or div), i.e.,   ∇
 (vector) 

produces a vector field 

Vector product, cross-product, × , ; rot,curl: ∇×


(vector) all produce vectors 

 

 2.3.1Scalar Vector Product 

There are different symbols used to denote each of these operations.  Given 
two identical vectors 1u  and 2u  their scalar product is indicated as V W⋅

 

.  We 
can also write this with different notation, such as V,W , or ⋅V W   

We will try to represent vectors in matrix notation from here on, i.e.: 

  
1

2

3

a
a
a

 
 =  
 
 

V  and 
1

2

3

b
b
b

 
 =  
 
 

W ,  

so that the result of the scalar product is represented as the sum of the 
products of the coefficients of the basis vectors, i.e.  

  ( )1 1 2 2 3 3a b a b a b⋅ = + +V W .  

Notice that the end result is not a vector but rather, a single value.  We can 
also show that this resultant value can be evaluated if we know the length of 
each vector ,V W  and the angle between those two vectors, θ , so that the 
value of the dot product can be calculated in a new way: 

  cosθ⋅ =V W V W  



One application of the scalar product is to determine the intensity of a 
sunlight on a surface and can be used to create a sense of sloping surface in a 
topography map.  For example, given a vector that represents the normal to the 
land surface, and a vector than represents the sun’s rays, when the two vectors 
are parallel to each other, theta is 0, and the following has a maximum value 
(=1): 

cosθ⋅
=

V W
V W

 

On the other hand, when a scarp is perfectly at right angles to the sun 
overhead, the same expression has a value of  0.  Values between 1 and 0 can 
then be scaled to represent full illumination of total shadow. 

The scalar product between two vectors can be represented more easily in 
terms of indicial notation: 

  
3

1

i

i i i i
i

=

=

=∑VW VW  (Indicial Notation)  ->Kronecker Delta 

 

 

A scalar product between the ‘del operator’, or gradient operator, 
(represented by the Greek capital ‘nabla’: ∇ ) and a scalar field is also known as 
the gradient or ‘grad’ and produces a vector. 

Example 1:  A digital elevation model topographic data set consists of a 
scalar field—elevation values (z) at each point (x,y).  The direction of the 
maximum slope at each point is the gradient and the value of the slope is the 
length of the vector. 

 ( ) z(x,y) z(x,y)ˆ ˆz x,y
x y

x y∂ ∂
∇ = +

∂ ∂
 

For example:    

  sin( x ) cos( y )
ˆ ˆcos( x ) sin( y )

z
z x y
= +

∇ = −
,  

 



Q. What is the scalar product of any two different basis vectors 

A. 0 

Why?: By definition, basis vectors in a Cartesian system have a unit length 
and are orthogonal, so that the angle between them is 90o (cos 90 o= 0) and the 
product is 0. 

Q. What is the scalar product of any two identical basis vectors? 

A. 1 

Derive the answer: 

 

In Matlab the cross and dot products of two vectors are calculated as 
shown:  

a = [1 2 3];  

b = [4 5 6]; 

c = cross(a,b)  

c = -3     6    -3 

d = dot(a,b) 

d = 32 

d = a*b’  

d = 32 

  

 

2.3.2 Vector Cross-Product 

The other way of multiplying vectors, called a vector product, is written as 
follows: 



 
1 2 3

1 2 3

1 2 3

ˆ ˆ ˆx x x
a a a
w w w

×V W =  

And is expanded by determinants (see above) 

In indicial notation, a cross product between two vectors is written as: 

 i ijk j kε=V V W   ->Permutation Tensor 

In MatlabTM the cross products of two vectors are calculated as shown:  

a = [1 2 3];  

b = [4 5 6]; 

c = cross(a,b)  

c =-3     6    -3 

 

2.4 Indicial Notation/Einstein summation notation/Einstein Notation 

Indicial notation by Ricci-Curbastro and Levi-Civita (1897) and its 
adaptation in the development of relativity (Einstein, 1916)helps express 
complicated tensors in a more convenient way.  When using this convention, a 
repeated index implies addition. For example, the dot product of two vectors: 

 

3

1
3

1

1 1 2 2 3 3

i

i i i i
i
i

i i i i
i

a w a w

a w a w a w

=

=

=

=

=

=

= + +

∑

∑

VW VW

 

 

In this type of notation, a comma signifies derivation with respect to the 
following index value.  The summation convention always continues to apply. 
So, for the following case: 

http://www-history.mcs.st-and.ac.uk/Mathematicians/Ricci-Curbastro.html


 
1 1 1

1 2 3

32 2

1 2 3

3 3 3

1 2 3

1 2 3i
i , j

j

, i, j , ,
x

x x x

x x x

x x x

∂
= =
∂

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂∂ ∂

=  
∂ ∂ ∂ 

 ∂ ∂ ∂
  ∂ ∂ ∂ 

uu

u u u

uu u

u u u

 

 

For example, in indicial notation, the product of a tensor matrix and a 
vector, would be written as follows: 

 
3

1

1 1 2 2 3 3

ji i i ji

i ji
i

j j j

=

=

=

= + +

∑

u w w u

w u

w u w u w u

 

By convention, here we summed on the repeated indices.  No we can 
estimate all the possible combinations of j=1,2,3, that is:  

 
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 22 2 33 3

1

2

3

j j

j j

j j

, i
, i
, i

= + + =

= + + =

= + + =

u w u w u w u w
u w u w u w u w
u w u w u w u w

 

 

We can show how this notation relates to other matrix notations by the 
following comparison: 

 
11 12 13 1

21 22 23 2

31 31 33 3

ij j

  
  =   
  
  

u u u w
u w u u u w

u u u w
or, equivalently, 

 
11 12 13 11

21 22 23 21

31 31 33 31

ij j

  
  =   
  
  

u u u w
u w u u u w

u u u w
, so that when there is only one 

column we express the multiplication as follows: 



 1 1ji i i ji=u w w u ,  

i.e., w has only one column. 

For the more general case, the number of rows of the first matrix may be 
different to the number of rows in the second matrix.  (But, as always, the 
number of columns in the first matrix on the left must equal the number of 
rows in the second matrix on the right). 

 

2.5 Determinants 

A matrix is a display of numbers (Boas, p. 87). Only a square matrix can 
have a determinant.  Vector cross product is estimated with the use of 
determinants.  The determinant of a matrix can be evaluated by expanding it 
into minors with the appropriate accompanying sign (cofactor): 

For example, 

 ( )
1 2 3

1 2 3

1 2 3

ˆ ˆ ˆx x x
det Y det a a a

w w w

 
 

=  
 
 

 

  

 

1 2 3

1 2 3

1 2 3

2 3 1 3 1 2
1 2 3

2 3 1 3 1 2

ˆ ˆ ˆx x x
a a a
w w w

a a a a a a
ˆ ˆ ˆx x x

w w w w w w

=

= − +

 

On the R.H.S., each coefficient next to basis is known as a ‘minor’ 
determinant of the principal determinant.  The sign of each of the terms on the 
R.H.S. are called co-factors, which are determined using the following 
mnemonic: 

Cofactor of row i and column j (Cij) is the sign before the minor 

 1i j
ij ijC M+= − , where 



 ijM
+ − + 
 = − + − 
 + − + 

 

The value of the determinant is the same whether you carry out the 
procedure above along one row or carry out the analogous procedure along 
one column.  The procedure is called “Laplace’s development of a 
determinant”. There are many useful facts about determinants and matrices 
that can be used to simplify the arrays of numbers and eventually determine the 
solution of sets of simultaneous equations, but for now these useful facts are 
beyond the scope of this class. 

In the case of an nth order determinant we can use Laplace’s procedure 
until we arrive at 2nd order determinants (as above). 

Depending on your prior training, determinants can be calculated using 
different algorithms, that is by rows (above), columns or diagonals (Sarrus’ Rule 
or Sarrus’ Scheme) 

Try to calculate this determinant by hand, and in Matlab or Mathematica 
or Excel: 

0 6 3 5
2 8 9 4
1 5 11 4
2 0 0 1

=? 

 

2.6 Kronecker Delta in Indicial Notation 

Kronecker delta is defined by 

 1
0ij

i j
i j

δ
=

=
≠

{  

For example, in the case of the dot product (scalar product) which we saw 
previously, (*) we noted that the indicial notation for: 

 

3

1

i

i i i i
i

=

=

=∑VW VW
  



Use of the Kronecker delta allows us to rewrite this also as: 

 
i i i j ijδ=VW VW

 
We no longer have repeated indices, so that we must find all possible 

combinations of i and  j , but also consider the qualification by the Kronecker 
delta that can null the value of product.  This may be seen more readily if we 
expand the above expression: 

 
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

i j ij

ij

...
...

δ

δ

=

+ + + 
 + + + 
 + + 

VW

VW VW VW
V W V W V W

V W V W V W
  i,j = 1,2,3 

 
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

i j ij

...
...

δ =

+ + + 
 + + + 
 + + 

VW

VW V W V W
V W V W V W

V W V W V W
 

Remember, that the magnitude of this vector that results from this dot-
product multiplication of two vectors is also: 

 

i j ij V W

V W V W cos

δ

θ

= ⋅

⋅ =

VW
 

   

 

 

2.7 Permutation Tensor/Levi-Civita Permutation Tensor and Indicial Notation 

We are introducing here an advanced form of indicial notation, known as 
the permutation tensor (or alternating tensor) which is a skew-symmetric 
tensor, that is that the off-diagonal terms are equal and opposite, e.g., 

  
ij ji= −T T

 
The Levi-Civita, permutation or alternating tensor has the following definition 
for n-dimensions (Wrede, 1972): 



1

1

0

1......r ..n

if sub indices are even

if sub indices are odd

, otherwise

ε
+ −

= − −






 

We can see more readily how the alternating tensor works if we work from 
low-dimension determinants to higher-dimension determinants. 

Let us start by calculating the determinant a  where  a has two rows (j=1,2) 
and two columns (k=1,2), that is, let’s work out the following: 

 11 12

21 22

det
a a

a
a a

=  

 11 22 21 12det a a a a a= −  

Using, indicial notation the determinant of a can also be expressed as: 

 1 2det jk j ka a aε=  

If we use the summation convention over repeated indices we can sum 
systematically over the complete range of values for each index; first over j’s 

 1 11 2 2 12 2det k k k ka a a a aε ε= + , and then over the k’s: 

 11 11 21 12 11 22

21 12 21 22 11 22

det a a a a a
a a a a
ε ε
ε ε
= + +

+
 

Now, we apply the convention for the value of the alternating tensor to create 
the coefficients of all the a-based terms: 

 11 11 21 12 11 22

21 12 21 22 11 22

det ( 0) ( 1)
( 1) ( 0)

a a a a a
a a a a

ε ε
ε ε

= = + = +

= − + =
 

Finally, there are only two non-zero terms left: 

  11 22 12 21det a a a a a= −  

We have revealed the compact and accurate nature of the alternating tensor. 

If we increase the dimensions of the determinant by one we will have that: 



 1 2 3det ijk i j ka a a aε=  

If we do this one more time, for a 4th-order determinant: 

 1 2 3 4det hijk h i j ka a a a aε=  

So that for much higher dimensions, the nth order determinant can by 
symbolized as follows: 

 

11 1

1

. . .
. . . . .

det . . . . .
. . . . .

. . .

n

n nn

a a

a

a a

=  

 
1 2 1 1 2 2

det
r n r r n np p p p p q p q p q p qa a a a aε=

 

  , 

Where pr=1,2,3,4…l, qr=1,2,3,4…l 

 

In the case of second-order tensors, we will need to use the permutation 
tensor in the following situations:  

  1ijkε =  for ijk or jki or kij  

e.g.,   123 231 312 1ε ε ε= = =  

Also,   1ijkε = −  for jik or ikj or kji  

e.g.,   132 213 321 1ε ε ε= = = −  

  0ijkε =  when any index is repeated 

e.g.,   112 121 211 221 0etc.ε ε ε ε= = = =  

Use the following diagrams as mnemonics for determining the sign of the 
permutation tensor. 

 



            

When mixing different generic indices remember these equivalences: 

  1ijk jki kijε ε ε= = =  

  1ijk ikj kjiε ε ε= = = −−  

  0kii ijj kkiε ε ε= = =  

Let’s show the use of the permutation tensor for abbreviating a cross-
product  between two vectors (->). 

  i ijk j kε=X V W  

  
1 2 3

1 2 3

1 2 3

ˆ ˆ ˆx x x
a a a
w w w

×V W =  

  ( ) ijk j ki
ε×V W = V W  

 

Example uses of  Permutation Tensor 
 

The following identities for the permutation tensor can be very useful: 

  1. 6ijk ijkε ε =  

  2. 2ijk ijl klδε ε =  

  3. ijk klm jl km jm klδ δ δ δε ε = −  

Proof for identity 1: 



( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 3 2 3 1 3 1 2

1 2 1 3 3 2 1 1 3 2

0

ijk

if i , j , k is , , , , , or , ,

if i , j , k is , , , , , or , ,

otherwise : i j , j k or i k

ε
+

= −

= = =






 

So in all the 27 possibilities, only the 6 shown above is none zero 

So 

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1

6

ijk ijk
ε ε = × + × + ×

+ − × − + − × − + − × −

=
 

 

Let’s show the usefulness of the permutation tensor by way of an example 
that demonstrates the following vectorial identity: 

 ( ) ( ) ( )× × = ⋅ − ⋅A B C A C B A B C  

Notice that (1) the final result will be a vector and that (2) ultimately, we 
want to obtain the elements of a vector (e.g., k=1,2,3) 

 ( ) ( )( )k
× × = × ×A B C A B C  

 ( )ijk j ijk j klm l mk
ε ε ε× =A B C A B C  

i,j,k,,l and m are called dummy variables which can by equal to 1, 2 or 3 at 
any time i.e.,   

 i,j,k  =1,2,3 , and  

 k,l,m =1,2,3 

We continue to follow the convention that we must sum over repeated 
indices.  

At this point we can incorporate one of the identities from above, so that 
we now have 



 
( )

( )

ijk j klm l m il jm jl im j l m

il jm j l m jl im j l m

I ( II )

δ δ δ δ

δ δ δ δ

ε ε = −

= −

A B C A B C

A B C A B C  

We can now expand each of these terms on the right to see if there are any 
terms that can be excluded from the derivation.   

There are too many terms to try to do this in a brute force way, so let’s first 
ask four big-picture questions which cover all four possibilities. 

Q1. In so doing, we should think in which cases the combination of indices 
will provide either I=0 OR II=0 ? 

 i.e., when will I=0?.....     OR  when will II=0?.....   

For the case of the first term on the right,  

   I=0 ?                     when i l j m≠ ≠  

   II=0  ?                    when j l i m≠ ≠  

Q.2 Let us ask a second question before we get confused by the terms.   

In which cases, will both terms on the right be equal, i.e.,  

   I=II ?   when  
 i l & j m & j l & i m= = = = , 

 i.e.,  i l j m= = = , when all the indices are simultaneously equal. 

For this case I-II=0 (!!), whether they are individually equal to 0 or not. 

 

Q.3 Finally, for which case will I=0  AND II=0 ? 

  I=II=0?       when i l j m≠ ≠   AND j l i m≠ ≠  

Q. 4 Now, the only cases that will be left, will be those where  

  0I ≠ AND 0II ≠ , (both are non-zero) 



   0I ≠ ? when i l & j m= =  

   0II ≠ ? when j l &i m= =  

  0I ≠ OR 0II ≠  (i.e., only one of ther two terms is non-zero) 

Now thanks to this overview, we know that the only cases which will 
contribute are those where either terms on the right are not equal to 0 or to 
each other. 

So, when is 0I ≠  and  i l & j m= =  we obtain the following expression: 

 

( )
( )

( )

( )
( )

2

lmk m klm l m ll mm ml lm m l m

lmk m l m ll mm m l m ml lm m l m

m l m m l m

m m l

lC

I

δ δ δ δ

δ δ δ δ

ε ε
ε

= −

= −

=

=

= ⋅

A B C A B C

A B C A B C A B C

A B C A B C
A C B
A B

 

(Recall from earlier in these notes that the scalar product in indicial notation 

is 

  

i j ij V Wδ = ⋅VW
 

 

 

So, when 0II ≠ ,   j l &i m= =  we obtain the following expression: 

 

( )

( )

mlk l klm l m ml lm ll mm l l m

ml lm l l m ll mm l l m

ll mm l l m

ll mm l m

l l m

m(
( II )

δ δ δ δ
δ δ δ δ
δ δ
δ δ

ε ε = −

= −

= −

= −

= −

= − ⋅

A B C A B C
A B C A B C
A B C
A B C

A B C
A B)C

 



(QED) 

2.6 General Matrix Multiplication: expanding the indicial notation 

In general matrix multiplication, we multiply over the columns and add over 
the rows. Different to dot and cross products of vectors we can multiply 
matrices of variable dimensions. The only restriction is that the number of 
columns (j) in the first matrix is equal to the number of rows (i) in the second 
matrix during the multiplication. 

Using indicial notation, for two different matrices, A and B,  

 ij ik kjC A B= ,  

Where, for matrix A, i is the number or rows and k the number of columns.  
For matrix B, i is the number or rows and k the number of columns. For 
matrix C, i is the number or rows and k the number of columns. 

In order to be able to multiply matrices, the number of columns in the first 
matrix must equal the number of rows in the second matrix (Hence k is 
repeated).  Note that i and j can be different and that in the following example 
we are assuming a special case where they are equal to 3.   

According to indicial notation, since the k index is repeated then there must 
be a summation between the multiplications of columns of the first matrix and 
rows of the second. So, in a more expanded form we obtain: 

 

3

1

1 1 2 2 3 3

ij ik kj
k

ij i j i j i j

C A B

C A B A B A B
=

=

= + +

∑  

If we now consider every possible combination of i and j, where i=1,2,3 
and j=1,2,3 we have 9 permutations (tensor rank=3 (=dimension), order =2 ) 



 

11 11 11 12 21 13 31

12 11 12 12 22 13 32

13 11 13 12 23 13 33

21 21 11 22 21 23 31

22 21 12 22 22 23 32

23 21 13 22 23 23 33

31 31 11 32 21 33 31

32 31 12 32 22 33 32

33 31

C A B A B A B
C A B A B A B
C A B A B A B
C A B A B A B
C A B A B A B
C A B A B A B
C A B A B A B
C A B A B A B
C A B

= + +
= + +
= + +
= + +
= + +
= + +
= + +
= + +
= 13 32 23 33 33A B A B+ +

 

These permutations can be placed into a matrix, consisting of 3 rows and 3 
columns 

 
11 12 13

21 22 23

31 32 33

ij

C C C
C C C C

C C C

 
 =  
 
 

 

In MatlabTM: 

>> A= [1 0 1;0 0 0] 

A = 1     0     1 

       0     0     0 

>> B= [2 0 3;1 3 3; 1 2 2] 

B = 

     2     0     3 

     1     3     3 

     1     2     2 

>> A*B 

ans = ? 

          



Q. Do this example above by hand 



* See Powerpoint for examples of matrix Multiplication in matlab 
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Exercises in vector and tensor calculus 

 

1.  In the case the indices are 1,2,3 show that the following is true: 

il im in

ijk lmn jl jm jn

kl km kn

δ δ δ
δ δ δ
δ δ δ

ε ε =  

2.  Also show that the indicial notation for a 4th-order or 4x4 determinant, 
where h,i,j,and k is true: 

1 2 3 4det hijk h i j ka a a a aε=  

 

3. Given a ¼ spherical surface with the accompanying matlab program, 
calculate the gradient at each point on the sphere and plot out the gradient as a 
vector plot viewed from above. 

For your convenience I have added example Matlab code that generates and 
plots ¼ of a spherical surface: 

 
% program to plot sphere 
% Z2 = -x*x - y*y + radius^2 
% Declare the dimensions 
% to reserve space 
radius= 50; 
X1 = ones (100,100); 
Y1 = ones (100,100); 
Z1 = ones (100,100); 
  
x = 1:1:100; 
y = (1:1:100)'; 
  
X = X1 .* repmat(x,100,1) 
Y = Y1 .* repmat(y,1,100) 
  
% repeat vectors vertically 100 times 
X2 =  X .* X 
Y2 =  Y .* Y 
Z2 =   -X2 - Y2 + radius*radius 
Z  =   sqrt(Z2) .* Z1 
  



% zero out areas outside the sphere where solutions are not 
% real 
zero_out = find(Z2<0) 
Z(zero_out) = 0 
  
surf(X,Y,Z) 
  
  
  
%Z  
% radius=1 
%   
% z = sqrt(z2) 
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