
TENSORS 

 
Tensors are abstract objects describable by arrays of functions.  Each function of such 

an array is also called a component.  Components are functions of the selected co-ordinate 
system (Hadsell, 1995).  As such, the component can change in aspect with the change of 
reference system.  However, the value of the property they serve to represent does not.   

Let’s try to visualize the components of a tensor and their relation to real physical values 
they represent: 

 

A tensor is called an nth order tensor when it comprises an array of nr components, 
where r is the number of the dimension (2D, 3D, etc.)  in use and n is called the order We 
will be mainly seeing second or third-order tensors in three or four dimensions, so that our 
arrays can have from 32 to 43 components. Arrays with nine components can be written in 
the form of a 3x3 matrix.  Arrays with 81 components are more difficult to visualize because 
they are described by a three-dimensional lattice array 3 x 3 x 3.  In the case of more than 
two dimensions indicial notation becomes a very convenient way to deal with tensors.   

  

STRESS TENSOR 

A stress tensor is one of order 2 and in 3 dimensional space has 9 components.  

In order to study and define the stress at a point we can study stress in two ways.  First, 
on three orthogonal planes passing through the point, or we can study stress on the six sides 
of an infinitesimally small cube as the cube tends to that point.   

We view this cube as being acted upon by body forces on all the particles of mass it 
contains.  Body forces act at a distance and could include a gravitational, electrical or 



magnetic field that is acting on the body.  It is convenient for us to disregard these body 
forces for now assuming that the body is not experiencing any linear acceleration that can 
contribute to a gradient in the stress vector field. 

We also see this small cube as non-rotating with no net torque acting upon it.   

In a Eulerian view of the world we fix our point of observation, say at a geophone and 
measure how quickly the ground moves with respect to the fixed point.  Another approach 
to viewing the world would be to fix our reference frame upon the particle in motion and 
describe the wavefield from the new vantage point (Lagrangian view).  However, in many 
cases and in our entire approach we will use a Eulerian view of the world. 

 

 

 

 

 



Stress on a surface can be treated as a “stress vector” and is also called a traction vector 
(T


) Traction is defined as: 
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Using indicial notation, F


∆ can be written as iii xFF ∆=  

In the limit, traction equals force per unit area at a point on one face.  (We take as 
convention that the surface stress acts on the outer surfaces of the cube upon the inner 
surface.) 

Each face of the cube can experience traction or stress.  We use the following 
convention to denote stress: 

  ijσ  

where i is the index of the axis to which the face is normal and j is the index of the 
direction in which the component of the traction vector is applied.  When the component of 
the traction vector is applied in the direction of the basis vector, our convention is to use a 
positive value and negative when the component is applied opposite to the sense of the basis 
vector.  Sometimes  

( )iiij σσ =  and each component is called normal traction component.  e.g.,  

  1 2 3, ,σ σ σ  

Often, when ji ≠ ,  ijij τσ = and , ijτ  being used to denote the shear traction 

component.  Ikelle and Amundsen (2005) use ijτ  for both normal and shear traction 
components.   

If the cube does not rotate then the shear tractions must cancel each other out, so that 
for each case, the net torque is zero, where  

 Torque= ×r F  

 Torque sinθ= r F  

We obtain force from stress by multiplying the stress over the area it acts.  Force is the 
product of traction times the surface area over which the traction is applied.  

 



 

 

 

If the cube in question does not experience a net rotation, because the material is elastic, 
then the net torque should be 0. 

Of the 18 traction components, there are three pairs that must cancel each other’s effects 
if we assume that there is no net rotation during the application of stress.  For the three 
cases we get: 

 ( ) ( )1 21 1 3 2 2 12 2 3 1ˆ ˆ ˆ ˆx dx dx rx x dx dx rx× = − ×σ σ  

 ( ) ( )3 23 3 1 2 2 32 2 1 3ˆ ˆ ˆ ˆx dx dx rx x dx dx rx× = − ×σ σ  



 ( ) ( )3 13 3 2 1 1 31 1 2 3ˆ ˆ ˆ ˆx dx dx rx x dx dx rx× = − ×σ σ  

In indicial notation these three cases can be written as: 

 ( ) ( )21 1 3 12 2 30 0 0 0 0 0 0 0ijk k ijk kj j
dx dx , , ( ,r , ) , dx dx , ( r , , )σ σε ε= −  

 ( ) ( )23 3 1 32 2 10 0 0 0 0 0 0 0ijk k ijk kj j
, , dx dx ( ,r , ) , dx dx , ( , ,r )ε ε= −σ σ  

 ( ) ( )13 3 2 31 1 20 0 0 0 0 0 0 0ijk k ijk kj j
, , dx dx ( r, , ) dx dx , , ( , ,r )ε ε= −σ σ  

 

For the equation to hold true then ijji σσ = , which is the description of a symmetric 
tensor.   In other words, in order for the net torque to be zero the tensor must be 
symmetric. 

A tensor, tij is symmetric iff  

 0=jkijk tε .  

The symmetry means that the off-diagonal terms are equal 
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For example, if i=1: 
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Remember that  
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An essential working assumption for this theorem is that the body must be in mechanical 
equilibrium, that is, the body is not experiencing any change in its linear or angular 
momentum.  The invariance of the value of the stress field reminds us of the general 
invariance properties we examined earlier with vectors, and is hinted at by the symmetry of 
the general stress tensor that we demonstrated. 

 

CAUCHY’S THEOREM OR STRESS PRINCIPLE  (BEN- MENAHEM) 

Cauchy’s theorem states that given a plane of interest, we can define a traction vector (a 
first-order tensor) at a point ( ( )nT 



) on this plane in terms of any orthonormal reference 
system.  That means that although the stress field tensor is a second-order tensor we can 
deal with stress as a lower-order tensor, simplifying our mathematical complexity.   In other 
words, according to Cauchy’s theorem and using indicial notation we can have 

  i ji iσ=T n  

In other words, stress at a point can be manipulated equally we as if it were only a vector 
without loss of accuracy in our description of the real world. 

Especially note the presence of the components in .   The Cauchy theorem requires that 
the traction vector be a function of a plane, which is described by the direction cosine 
components ( in ) of the unit vector ( n ) normal to the plane.  In summary:   



 i icosθ=n   

 ( )( )1i i i icos cosθ θ= =n n  

The angle θ is the angle between each component of the unit vector n and the 
corresponding coordinate axis. 

We can demonstrate Cauchy’s theorem by balancing the forces on the sloping face of a 
tetrahedron against the forces on the other three sides.  This tetrahedron in the limit goes to 
a point as its dimensions become infinitesimally small.  If the equilibrium condition (no net 
torque) is met we will discover that Cauchy’s theorem holds true. 

 

 

 

It will be very helpful to note before we begin that  

 ( ),cos ini dSdS θ=  

e.g.,   ( )1 1 1n ˆdS dS cos ,x =  n  

where iθcos is the direction cosine with regard to the ix̂ basis vector.   



We begin by balancing forces: 

 
( ) ( ) ( ) ( )∫ −+−+−+= 332211 ˆˆ)ˆ( dSxTdSxTdSxTdSnTdSnT n











 

  ( ) ( ) ( ) ( ) 332211 ˆˆˆ dSxTdSxTdSxTdSnT n







−−−=  

Note that ( )1x̂T


 is a three-component stress vector across the 1x plane, which has a 
normal 1x̂ , and is multiplied by 1dS a scalar (units of area), so that each term on the right 
hand side is also a vector scaled by the value of the surface across which the stress vector is 
acting. 

 

Given that the tetrahedron is in equilibrium, then ( )∫ = 0dSnT 



, so that the first term on 
the right-hand-side must equal the sum of the remaining three, i.e. 

 

 ( ) ( ) ( ) ( ) 332211 ˆˆˆ dSxTdSxTdSxTdSnT n







++= . 

In other words, if we know the stress on three planes of the tetrahedron  (RHS) we can 
tell the stress on a general plane (LHS)! 

By substituting the scalar value of the surface area of each side of the tetrahedron ( idS ) 
in terms of the surface area of the main face ndS , we have:  

 ( ) ( ) ( ) ( ) 31 2
1 2 3n n n n

ˆˆ ˆ n xn x n xˆ ˆ ˆT n dS T x dS T x dS T x dS
n n n

     ⋅⋅ ⋅
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Rearranging terms, we have: 

 ( ) ( ) ( ) ( )( )1 1 2 2 3 3n n
n ˆ ˆ ˆ ˆ ˆ ˆT n dS T x x T x x T x x dS
n

= • + • + •


   





 

Dividing both sides by ndS , we have: 

 ( ) ( )i
i j i jˆ ˆn T x x

n
=

nT 



 

Each component of the general stress tensor on the left-hand side of the equation 
comprises components of stress of all three other faces.   



As an example, the first component of the stress vector in the 1x̂  direction on a face 
perpendicular to the 2x̂  direction is ( ) 121 ˆˆ xxT , or 21σ .  The first component of stress vector 
in the 2x̂  direction on a face perpendicular to the 2x̂  direction is ( )1 2 2ˆ ˆT x x , or 22σ . The first 

component of the stress vector in the 3x̂  direction on a face perpendicular to the 2x̂  

direction is ( )1 2 3ˆ ˆT x x , or 23σ . 

The complete stress vector on this face has three components: 
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, or 

 ( ) ( )2 2 21 1 22 2 23 3ˆ ˆ ˆ ˆT x x x xσ σ σ= + +n


 

as expressed in the geological convention.  From here we can further generalize the 
example and examine the contribution from each face to the 1x̂ component of the stress 
vector on the general face, which we have shown is the result of summing the contributions 
on the rest of the tetrahedron: 

 ( ) ( )1 1 1 11 2 21 3 31 1ˆ ˆx xσ σ σ= + +T n n n  

 

In indicial notation, all the cases can be summarized as: 

 i j jiσ=T n  

   -> Acoustic Wave Equation 

where jiσ is the general stress tensor and  jn  is the component of the normal to the 
plane. 

 

Some examples of stress include:  

(1) Hydrostatic stress: 
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,where ρ is the earth’s density,  g gravitational acceleration and h depth in the earth’s 
crust. 



(2) uni-directional stress (say only in the 1x̂ ) superimposed on lithostatic stress 
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(3) In geological circles, general stress is always representable simply as: 
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