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 DIVERGENCE 

Divergence of a vector field is a scalar operation that in once view tells us whether flow 
lines in the field are parallel or not, hence “diverge”.   

For example, in a flow of gas through a pipe without loss of volume the flow lines 
remain parallel, but if the pipe narrows and the gas experiences compression then the flow 
lines in the gas will converge (i.e. divergence is not zero) 

Another term for the divergence operator is the ‘del vector’, ‘div’ or ‘gradient operator’ 
(for scalar fields).  The divergence operator acts on a vector field and produces a scalar.  In 
contrast, the gradient acts on a scalar field to produce a vector field. 

When the divergence operator acts on a vector field it  produces a scalar.  In contrast, 
the gradient operator acts on a scalar field to produce a vector field. 

The divergence vector operator is ∇  (also known as ‘del’ operator ) and is defined as 
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  in either indicial notation, or Einstein notation as 



  i i
i

x ,
x
∂

∇ = ∇ = =
∂



 

For example, 
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We will see more on indicial notation later but note that the summation is implied by 
repeated indices (ii) and that a “,i” denotes derivative with respect to the variable i (=1,2,3)  

(Note that I have omitted the dot; the dot is not essential, but like a ‘dot product’ of two 
vectors the outcome is a scalar value.) 

(Note that I have omitted the dot; the dot is not essential—it represents abuse of 
mathematical notation, although it is still correct) 

Schey p. 36-40 “Div, Grad and All That” 
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If we consider the physical meaning of a divergence.  Start with a cube and estimate the 
surface integral of some function such as the force applied at all points on its surface: 

 

n is the unit vector normal to the faces of a cube 

dS is the area of each face of the cube 

1 2 3( x ,x ,x ) is a point at the centre of the cube. We are interested in the ratio of the 
integral of this function to the volume enclosed by the cube.  This limit of this ratio is called 
the divergence: 
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is a scalar. 

If, for example we examine the divergence of the electrostatic field, then the sum of the 
field over the faces can give us an idea of the charge included in the volume.  If we sum the 
flow of the field over the faces and ad the total flow on all 6 faces and then make the cube 
diminish to a very small size, then we should be able to determine the flux at the point.   

If we measure the sum of all the displacements/strains  around the face of the cube and 
in the limit they tend to zero then we can say that there is no net change in the volume of 
the object.  That would mean that as much strain is moving the faces in one direction as 
there are net strains compensating for deformation on the other side of the cube. 

 

For cases of pure and simple shear there is no net change in area of volume, i.e. volume 
is conserved.  In this situation,  

  u∇⋅  =0 

 u∇⋅   can also be viewed as the volumetric strain: 

  
Vu

V
∇

∇⋅ =  

  31 2

1 2 3

i

i

u uu uu
x x x x
∂ ∂∂ ∂

∇ ⋅ = = + +
∂ ∂ ∂ ∂

  

You will see later that the strain tensor is defined in general as: 
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The strain tensor is equal to the divergence of the displacement field, when i=j . 

Show that the divergence is the volumetric strain by the geometry of a deforming cube.  
Assume that the cube is growing only in the direction of the basis vectors. 

GRADIENT 

Gradient is the derivative of a scalar field and is also known as the “grad”. 

The gradient of a scalar field produces a vector. The gradient is written as: 
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The greatest spatial rate of change occurs in the direction of the gradient. 

The gradient is invariant to the coordinate transformation: 

 For a simple 2D example: 
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In indicial notation, the above example becomes: 
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The magnitude of this vector in the two-dimensional case is: 
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CURL 

The “curl” or “rot” of a vector field is defined as  
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In indicial notation, this can be written as: 
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  i ijk k , jf ε= u , or in mixed notation: 
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For clarification, we can write out the individual components long-hand: 
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DIVERGENCE THEOREM AND THE LAPLACIAN 

Gauss’s Theorem (or divergence theorem) states that the flux of a property over the 
surface of a volume equals the divergence of the property added up over the whole volume 
enclosed by the same surface.  The integral of the divergence over the volume tells use 
whether that property is changing in size.  That is, 
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Where n  is the vector normal to the surface at any point and F


 is the vector field 
property in question. 

If we make: 

 F u= ∇


, then 
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“The sum of the Laplacian (for a scalar field) over the volume is also the sum of the 
gradient over the entire surface” 



Note that we have just introduced the Laplacian operator. 

 

LAPLACIAN  

(From Lay and Wallace, 1995) 

When the Laplacian operator acts on a scalar field (u) it is equivalent to taking first the 
gradient followed by the divergence of the result, i.e.: 

  Laplacian = “∇⋅∇ ” 
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The Laplacian can also operate on a vector field ( F


), in which case it is equivalent to  

another vector field whose components are the Laplacian of the original vector components 
(if Cartesian coordinates are used) 
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In the general case for any coordinate system we can use the following vector identity, seen 
elsewhere (->) 

 

HELMHOLTZ’S THEOREM 

(From Lay and Wallace, 1995) 

This theorem states that any vector field F


, can be represented in terms of a vector 
potential (Ω



) and a scalar potential (Θ ) by 
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which are useful vector identities are: 



   0( )Ω∇⋅ ∇× =


 (div of curl of vector field)   
   ( ) 0Θ∇× ∇ =    (curl of grad of scalar field) 
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