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Compositional  data,  percentage  data,  counts,  ppm and  similar  proportional  data  often  need  to  be 
transformed.   Data-frames  should  have  each  variable  checked  for  error  and  outliers  prior  to  any 
analysis. 

Error checking of original variables 

The Index plot can be used to show outliers and aberrant values. This imaging tool plots  a 
graph of each sample according to its row position in the data-frame against the variable. 
The Indian deltas data-frame is used in the following examples [see  Hart, eNote02].  This 
data-frame had each delta added in sequence, thus if we look at the variation in a single 
variable over the whole sample sequence [e.g. plagioclase] the index plot [see figure below] 
shows the colors representing each delta in sequence. This provides an initial view of the 
distribution of the  variable by delta. The important axis is the vertical axis which shows the 
distribution of the plagioclase: in the example there is one  abnormalities in the Cauvery 
Delta data-frame. The R function identify() determined this was sample 24.  This sample must 
be checked prior to further  analysis to determine if  an error was made.  If  an error is 
suspected either the sample should be completely excluded from the data-frame or, at least, 
the value of the variable for that sample should be excluded by marking it as NA.

The R code for the index plot below is: 

> my.colors<-c("black","yellow","green","red","blue") # set up a color array. 

> plot(del1$pcchlorite,col=my.colors[del1$delta]) # plot the chlorite data. 

> title(main="Indian delta study:\n Index plot of chlorite by delta") # add the title. 

>legend(locator(1),c("Cauvery","Penner","Krishna","Godavari","Mahanadi"),pch=c(1,),col=my.
color s) # add and position the legend using the locator. 



The individual point of discrepancy is identified using: >identify(plagioclase,y=NULL) # place 
the  pointer  over  the  sample  [see  plagioclase  below where  point  24  is  an  outlier  and 
possibly an error]. 



Tests for normality of variables 

Prior to the application of  any statistical procedure the raw variables must be examined and 
their  distribution  understood.   Those  variables  that  need  transformation  should  be 
transformed with purpose in mind. To do otherwise can lead to a poor analysis of the data-
frame.  This is  important for multivariate and multi-population analysis as well as univariate 
and bivariate analysis.

The assumption of normality is important because it is a requirement of many statistical tests. 
The normal distribution is a reasonable model for many variables in the natural sciences. The 
central limit theorem shows that as the sample size gets large, many of the sample summary 
statistics, such as the sample mean, behave as if they are from a normally distributed variable. 
Thus it  is  assumed that parametric tests  or statistical  models have associated errors that 
follow a normal distribution. EPA Report EM 1110-1-4014, 31-Jan-08 [p:F-1] points out: 
“statistical tests for normality do not actually demonstrate normality but the lack of normality.  
They rely on the probability a given data set is normal (e.g.,  statistical software typically  
reports  a  “p  value”  for  the hypothesis  that  the population  distribution  is  normal).  If  the  
probability is low (e.g. p < 0.01 ), one rejects the assumption of normality, that is,  one  
concludes, based upon weight of evidence, that the data set is not normal. However, if the  
assumption  of  normality  is  not  rejected,  then,  strictly  speaking,  the  statistical  test  is  
inconclusive; the data may or may not be normal. This constitutes an additional reason to  
visually  examine  the  data  set  for  normality  and  to  decide  whether  to  proceed  with  a  
statistical  test  that  requires  normality.  In  practice,  if  the  assumption  of  normality  is  not  
rejected and graphical plots suggest normality, the statistical tests that rely upon normality  
are typically used” , and “The assumption of normality should not be rejected on the basis of  
a statistical test alone. In particular, when a large number of data are available, statistical  
tests  for normality can be sensitive to very small  (i.e.,  negligible)  deviations in normality.  
Therefore,  if  a very large number of data are available,  a statistical  test  may reject  the  
assumption of normality when the data set, as shown using graphical methods, is essentially  
normal and the deviation from normality too small to be of practical significance.” 

In the initial analysis of variables a good procedure is to examine each variable in the data-
frame for normality by the eye-ball method using box-plots of each variable, followed by a 
test for skewness, kurtosis, a Q-Q plot and calculation of a test for normality, especially the 
Shapiro-Wilks test [for sample sizes <=50] and the D'Agnostino's test [for samples sizes 50 
to 1,000].  Examining these comprehensive results allows a better view of the distribution of 
each variable  prior  to  performing any  transformation.  This  approach to  normality  testing 



combines graphical tests, and statistical tests. The Shapiro-Wilks test statistic is based on H0 

that  the  data  are  normally  distributed.  If  the  the  sample  size  [n]  is  larger  than  50  the 
D'Agnostino's test is calculated. The D'Agnostino statistic measures the linearity of the points 
on the normal probability plot. “If the normal probability plot is approximately linear (the data  
follow  a  normal  curve),  the  correlation  coefficient  will  be  relatively  high.  If  the  normal  
probability  plot  contains  significant  curves (the data  do not  follow a normal  curve),  the  
correlation coefficient will be relatively low”. [EPA, 2008] . 

Skewness and kurtosis

A test for skewness and kurtosis may not be part of the R functions but it is easy to write in 
R [the code is from Crawley, 2007, p:285-286].  Press enter at the end of each input line. 
Remember the data-frame must be attached to use the variable directly.

Crawley's skewness function

skew<-function(x)

{m3<-sum((x-mean(x))^3)/length(x)

s3<-sqrt(var(x))^3

m3/s3}

>skew(clay) 

-0.7940148

Crawley's kurtosis function

kurtosis<-function(x) {

m4<-sum((x-mean(x))^4)/length(x)

s4<-var(x)^2

m4/s4-3}

>kurtosis(clay)

0.5484766 # the clay kurtosis is neither platykurtic nor leptokurtic and thus kurtosis is normal.

Alternatively we can use the library(moments): 

 >skewness(clay,na.rm=TRUE), and
>kurtosis(clay,na.rm=TRUE) # Pearson's measure of kurtosis



Q-Q plot

We  use  the  quartile-quartile  plot  to  examine  a  variable  against  it's  standard  normal 
distribution [N(0,1)] to assess the goodness-of-fit. If the two distributions agree and  lie on a 
straight line in which x = y the data has normal distribution. If the line is straight but x != y 
then  a  linear  transformation  can  be  applied.  This  is  a  common  graphical  method  for 
assessing whether or not the distribution of a variable is Gaussian. 

>qqnorm(clay,main="Indian deltas study:\n Q-Q plot of clay") # the data distribution.

>qqline(clay,col=”red”) #use a red line for the normal distribution.



Shapiro-Wilks test

The Shapiro Wilk test is used for sample sizes of  50 or less.   The null hypothesis of the 
Shapiro-Wilk test is that the sample is taken from a normal distribution, thus P < 0.05 for W

rejects the hypothesis of normality. Samples which fail the test are difficult to analyze with 
parametric statistical methods.  Many statistical studies indicate this is  the  most reliable test 
for non-normality for small  to medium sized samples [Conover,  1999; Shapiro and Wilk, 
1965; Royston, 1982a, 1982b, 1995]. Nevertheless the results are not clear evidence of 
normality or non-normality but should be assessed along with other tests. 
>shapiro.test(clay)

>W=0.957,  p-value < 2.2e-16  # for  alpha 0.05 the p-value is  very small  so the NULL 
hypothesis that the the sample comes from a normal population, is rejected. 

It must be remembered that using the Shapiro-Wilk test statistic  is not the same as looking 
at  confidence  intervals.   Confidence  intervals  pertain  to  values  inside  the  probabilities, 
whereas the normality test pertains to values below p=0.05 or p=0.01 i.e a sample can fail  
the test at p=0.01 [1 in 100 the sample is not normal] but pass it at the higher probability of 
p=0.05 [1 in 20 that the sample is not normal].

D'Agnostino test

The D test is a skewness test and used as an alternative to the Shapiro-Wilks test when n is 
between 50 and 1000. The  D'Agnostino statistic measures the linearity of the points on the 
normal probability plot. “If the normal probability plot is approximately linear (the data follow  
a normal curve), the correlation coefficient will be relatively high. If the normal probability  
plot  contains significant  curves (the data do not follow a normal  curve),  the correlation  
coefficient will be relatively low”. [EPA, 2008] . The usage is:
>agostino.test(quartz, alternative = (“two.sided”, “less”,”greater”) #two.sided is the default.
> library(moments) 
> agostino.test(quartz) 
Typical output is:
D'Agostino skewness test data:  quartz skew = -0.343, z = -1.879, p-value = 0.06032 
alternative hypothesis: data have a skewness.  
In this case the p-value is greater than 0.05 therefore the variable is accepted as normally 
distributed. 



Kolmogorov-Smirnov Goodness-of-fit test

The K-S test is used to decide if a sample data set comes from a population with a particular 
distribution: see www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm.  
An adaptation of the K-S test is the Lilliefors test which It is used to test the null hypothesis 
that the sample data came from a normally distributed population, when the null hypothesis 
does not specify the expected value and variance of the distribution: see 
http://en.wikipedia.org/wiki/Lilliefors_test. 

TABLE OF TEST STATISTICS

[Source EPA]
                        
         Test  Sample Size Recommended Use

Shapiro-Wilk Test 

D'agnostino Test

  # 50 

< or = 1000

Highly recommended.                   

Filliben's Statistic  #100 Highly recommended but difficult to 
compute. 

Geary's Test     > 50 Useful when tables for other tests are 
not available .

Studentized Range Test  # 1000 Highly recommended if the data are 
symmetric, tails of the data are not 
heavier than the normal distribution, 
and there are no extreme values.

  Chi-Square Test     Large  Useful for grouped data and when 
the comparison distribution is known. 
May be used for other distributions 
besides the normal distribution 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
http://en.wikipedia.org/wiki/Lilliefors_test


Box plot

In the initial analysis of variables a good procedure is to examine each variable in the data-
frame for normality by the eye-ball method using box-plots of each variable. The eye-ball 
method using box plots can be used to quickly examine replicate samples to see how well 
they represent a sample taken from the single location.  The box plot shows on a single 
chart the  range, maximum and minimum value, median, skewness, critical limits and outliers. 
In the example below Province is designated a factor:

>ebentonites$Province<-factor(ebentonites$Province) # make Province a factor.

>boxplot(ebentonites$quartz~ebentonites$Province, main=' Egyptian Quarry Study', 
ylab='Quartz percentage', xlab='Province')

P2 shows an outlier and the narrowest range, P1, P2 and P3 are all skewed, P4 is not 
skewed and shows the broadest range.



Histogram with density plot

In  addition to plotting a simple histogram there is a function in the MASS library called 
truehist() which allows a density function [Gaussian] to be overlain on a histogram. 

>truehist(clay, breaks=seq(3,75,3), xlab=”% clay from Xray analysis”, ylab=”location 
frequency”, col=22)

>lines(density(clay,n=1051,na.rm=T),  col=”red”)  #  overlay  a  density  function  based  on 
n=1051, removing all of the 0 values.



Density plot

>library(sm) # load the non-parametric smoothing lib)
> delta.f <- factor(delta, levels= 
c("Cauvery","Penner","Krishna","Godavari","Mahanadi"),labels = c("Cauvery”, “Penner”, 
“Krishna”, “Godavari”, “Mahanadi"))  # create value labels 
> sm.density.compare(quartz,delta,xlab="Quartz from XRD")  # plot densities 

> title(main="Indian delta study:\n quartz density distribution by delta") # add title
colfill<-c(2:(2+length(levels(delta.f))))  #specify the color fill 
legend(locator(1), levels(delta.f), fill=colfill) # add legend via mouse click



Bag plot

A bagplot is a bivariate version of a boxplot in which 50% of all points are in the central bag and the 
bivariate median is approximated. Outliers are displayed joined by lines to the median, and a fence 
separates points inside the bag from those outside the bag. 

Using:

>library(aplpack) 

> bagplot(quartz,kfeldspar, xlab="quartz from XRD", ylab="kfeldspar from XRD", main="Indian 
deltas study") 



TRANSFORMATIONS 

The main reason for transforming data is that many statistical tests assume that the variables 
are normally distributed. Unfortunately true normality is rare in geological data. Fundamentally, 
mathematical  transformations should be applied only to variables  measured on the  ratio 
scale of measurement. The ordinal scale can be transformed by any increasingly monotonic 
function. The interval scale allows multiplication by a constant, and although moving from an 
interval to a ratio scale of measurement does not add much to the statistics that can be used 
it does allow transformations. Using the  ratio scale opens up the power of  mathematical 
techniques of analysis. Numerals from  data on a ratio scale have all the properties of real 
numbers and can be raised to powers, have roots extracted, and reciprocal and logarithms 
taken. Thus if a variable is not normally distributed then it can be transformed to a form that 
is normally distributed and analyzed using the powerful procedures of Gaussian statistics and 
the Normal curve.  

Transformations that are commonly used for improving the normality of variables do alter the 
data  at  a  fundamental  level,  especially  if  the  data  set  has  many  values  around  zero 
[exceptions are the square root and arcsine root transformations which work well for low 
counts and zero's].  However, if we accept that it is desirable to manipulate the data-frame 
prior to analysis, so that compositional values are switched from the sample space to the 
real  number  space,  then  the   computationally  simplest  method  that  is  constrained  by 
mathematical theory should be employed.

Many scientists have doubts about applying simple unconstrained statistical analysis directly 
to compositional datasets (Aitchison, 2003) because, as Chayes noted: “A basic problem is 
“the sum of the covariances of each variable is exactly equal to its variance, and opposite in 
sign”.  Aitchison, 1982, 1986 and Davis, 2002, along with many others, have addressed this 
problem, and Davis notes  “at the present time there is no completely satisfactory way of 
evaluating the strengths of correlations between variables in closed data sets.”  

Percentage and proportional data tend to be highly skewed and this can cause spurious 
correlations  amongst  variables  and  many  scientists  have  doubts  about  applying  simple 
unconstrained  statistical  analysis  directly  to  compositional  data-frames.  As  a  result  using 
untransformed  variables,  especially  in  multi-variate  analysis,  draws  much  criticism  from 
statisticians because of the constant sum problem that occurs with proportional data-frames. 
ALL methods of solving the closure problem draw criticism unless stringent mathematical 
assumptions are met. Many Natural Science data-frames are constrained by this constant 
sum problem because they are formed from proportional counts, as in palaeobiology; or, 



are  semi-quantitative  data  on  mineral  composition  expressed  as  a  raw  percentage  or 
normalized to 100%, as in X-Ray diffraction. 

On the other hand, there are numerous studies, especially in palaeontology, where interval 
and ratio data-frames based on proportional counts that sum to 100%, are used to draw 
interpretable and meaningful geological conclusions: unfortunately it seems that many of the 
statistical  procedures applied were inappropriate for the data-frame. Nevertheless,  good 
geological conclusions were derived and proved successful tools in geological analysis. The 
interpretation of such data demanded a lot of prior geological insight to derive conclusions 
from the results.   

The  work  of  Aichison  [1981,  1882,  1983,  1984,  1986]  changed the  approach  to  the 
problem.  Aitchison's  argument  that  compositional  data  with  N-variates  constrained  to  a 
constant sum create a N-1 dimensional sample space [a simplex] led to his transformation of 
simplex space to real space using a log-ratio transform.  The log-ratio transformation maps 
the  k-dimensional  simplex  to  the  k-dimension  real  place.  Aitchison's  insight  was  in 
“recognizing that it is the relative magnitudes and variations of components, rather than their  
absolute values, that provide the key to analyzing compositional data” …....... “Rock (1988, p.  
203)  described  some  of  the  problems  that  arise  in  treating  compositional  data  with  
conventional  statistical  techniques:  (a)  trends  and  clusters  on  petrological  ternary  and  
principal components diagrams can have little or no geological significance; (b) skewness  
and leptokurtosis, properties of the shape of a distribution defined by a probability density  
function (e.g. the normal distribution), can be induced by closure; (c) dendrograms produced  
by cluster analysis can be severely biased; d) results from discriminant analysis are likely to  
be illusory; (e) any correlation coefficient will be affected to an unknown degree by spurious  
effects induced by the constant sum constraint; (f) the results of tests of significance will be  
intrinsically flawed since they arise from techniques applied to data for which they were  
never designed to be used.” [ Pawlowsky-Glahn and Egozcue, 2006] 

Xie et al [2003] note “Although no universal consensus currently exists within the literature,  
Aitchison’s log-ratio transformation is applied to geochemical datasets more frequently than  
any other and has been shown to reliably account for non-normality and closure (Verrucchi  
and  Minissale  1995;  Reyment  and  Savazzi  1999;  Cullers  2000).  Because  the  absolute  
magnitudes of compositional variables are ratios to a common sum, Aitchison proposed to  
use relative magnitudes by calculating the ratio of each compositional variable compared to  
a single variable that functions as a constant divisor. Further, by taking the logarithm of the  
ratios, the transformed values can vary over the entire real number range, rather than being  
restricted to the range from zero to 100%. Thus, this transformation makes the application of  



conventional  statistical  techniques  more  justifiable”. Unfortunately,  because  of  the  large 
number of zero values that often occur in natural science datasets a log-ratio transformation 
does not solve the closure problem.  Moreover, using one of the variables as a universal 
divisor eliminates that variable from analysis and this is itself a problem because the variable 
used often  is  one of  sufficient  value to be of  interest.   Zero's  are not allowed in  the 
Aitchison's log-ratio transformation, therefore zero's should be replaced by values for the 
lower  limit  of  detection of  the particular  variable  in  the analysis.   For  example,  in  XRD 
compositional data this means the smallest amount of a given phase that can be identified. 
Connolly [2010] notes the detection limits are dependent upon the square root of the count 
time, which is dependent upon the “counts produced by a phase of interest at a particular  
concentration.” Further, “it is relatively easy to calculate the lower limit of detection for that  
phase.”  The lower limits of detection will be different for each phase in each analysis.

Besides the log-ratio transformation Aitchison (1983) suggested the use of the additive log-
ratio transformation 
>alr(x) = [log(x1/xD) log(x2/xD) ... log(xD-1/xD)] , and, the centered log-ratio transformation 
>clr(x) = [log(x1/g(x)) log(x2/g(x)) ...log(xD/g(x))] 
where g(x) denotes the geometric mean of the D components of x. 
Later, Egozcue et al [2003] introduce the isometric log-ratio.
Lee  and  Bacon-Stone  have  noted  “the  centered  log-ratio  transformation  has  the 
disadvantage that the covariance matrix formed based on such transformation is singular, 
while the operational  problem of the additive log-ratio transformation is that  a common 
divisor has to be chosen. As proven in the monograph of Aitchison (1986), the choice of 
common divisors would not affect the results of analysis due to scale invariance property, so 
the  choice  could  be  arbitrary,  but  the  clear  disadvantage  of  the  additive  log-ratio 
transformation  is  that  the  chosen  common  divisor  could  not  be  used  in  the  analysis. 
Therefore, some geologists resist the log-ratio transformation and continue to analyze the 
data  with  the  pathological  approach  (Aitchison,  2003).  To  allow  consensus  between 
statisticians  and geologists,  the selected common divisor  for  the log-ratio  transformation 
should be of moderate abundance and relatively small variance.”
Osborne [2002] in a very clear discussion of the issues of transformation covers the square 
root and the log transformation of variables and notes that for negatively skewed variables 
special pre-processing is necessary.  For negatively skewed variables Osborne recommends 
first  reflecting the   distribution,  adding  a  constant  to  bring  it  to  1.0,  applying  the 
transformation and then  reflecting it again to restore the original  order.  “To reflect,  one  
multiplies a variable by -1, and then adds a constant to the distribution to bring the minimum  
value back above 1.0. Then, once the inverse transformation is complete, the ordering of  



the values will be identical to the original data.”, Osborne, 2002.

The square root transformation has one important problem in that numbers between 0.00 
and 0.99 behave differently from numbers of 1.00 and above. Prior to applying a square 
root to the numbers of a variable the values must be examined to see if they represent both  
groups.  If both groups occur then add 1.00 to the value to make the number set consistent, 
if only one group occurs i.e. all values are between 0.00 and 0.99, or are 1.00 and above,  
then do nothing. Adding a constant only changes the mean, not the variance, kurtosis or 
skewness.  Negative numbers cannot have their square root taken so a similar logic applies 
i.e. add a value to each variable number equivalent to the positive value of the largest 
negative number [if the largest negative is -22 then  add +22 to all numbers in the variable. 
The square root transformation is effective for positively skewed distributions and can  be 
used on count data. 

The log transformation has  a  different  set  of  problems,  but  it  is  effective  for  positively 
skewed distributions.  Any number less than 1.00 or that is negative must have a value 
added that will bring its value to above 1.00 or above. The next problem is which base to 
choose?  If ranges are large the base 10 is used, and if ranges are small the base 2 or base 
e [92.7182818] is preferable because they pull the extreme values in less severely. 

Some  scientists  have  suggested  using  the  Freeman-Tukey  transformation  which  is 
arcsin( sqrt( x / n+1)) + arcsin( sqrt( x+1 / n+1)) in which the variance depends only on the 
denominator  of  the  proportion  in  question...something  that  can  be  used  to  advantage. 
“Arcsine or angular transformations have been used for many years to transform proportions  
to make them more suitable for statistical analysis. A problem with such transformations is  
that the arc sines do not bear any obvious relationship to the original proportions. For this  
reason,  results  expressed  in  arc  sine  units  are  difficult to  interpret.  A  simple  linear  
transformation  of the  arcsine  transform  has  been  used  to   produce values  that  are  
numerically close to the original percentage values over most of the percentage range while  
retaining all of the desirable statistical properties of the arcsine transform.” [anon].

One interesting aspect about percentage data is that it provides information on not only on 
how often a value occurs but also how often it did not occur.  Conventional frequency data 
provides information only on the former. Because of this duality a percentage is binomially 
distributed with two outcome vectors.  One vector is the presence number of the variable, 
the other is the absence number of the variable. If we use percentage data as a dependent  
variable in regression, the data is transformed to confine the projected value within 0-1, and 



make it closer to a normal distribution.  The model used is a general linear model [glm] for 
binomial  outcome, in which the samples are weighted by the sample size and arc sine 
transformed to make the error distribution normal.  This lead to the logit model.  The logit 
transformation assumes the data is binomial, and the logistic model for p as a function of x 
is: p = exp(a+bx)/(1 + exp(a+bx)).   This is obviously non-linear. To linearize it, consider the 
odds p/q (where q is 1-p): p/q = exp(a+bx).  Or:  ln(p/q) = a + bx  in which ln(p/q) is the 
logit transformation of p .  

R does not simply do a linear regression of ln(p/ q) against x. It also handles non-constant 
binomial variance ,  logit(p) going to -  and + ,  and differences between sample sizes∞ ∞  
using weighted regression. 

Finally, Maarten, Cox and Jenkins have written the -betafit- function in R as another method 
for  analyzing  percentage  data.  This  can  fit  a  regression  through  the  untransformed 
proportions  by  assuming  that  the  proportions  follow a  beta  distribution:   providing  for 
variance stabilization.

For univariate and bivariate analysis  the following procedure for dealing with skewness and 
normality  problems is used when analyzing compositional variables. 

The percentage data is first  converted to proportions by dividing them by 100.   The 
square root of the proportion is computed, and then  the inverse sine (arcsin function) 
derived for the resultant proportional values. 

The  sample  statistics  can  be  calculated,  such  as  mean,  variance,  stand  deviation  and 
confidence intervals, and back transformed for interpretation by simply reversing the original 
transformation. To undo the arcsine, the sign function is used, and, to undo the square root 
the  value  was  squared. This  methodology  aims,  especially  to  take  care  of  the  closure 
problem. The interpretation of back-transformed statistics must be done with care as often 
the back transformed data are biased estimates of such values, as means, variances and 
regression coefficients.  The confidence limits are always questionable whether the data is 
transformed  or  not!  The  arcsine  root  transformation used  in  proportional  variable 
transformation attempts to remove the skewness.  The variable values should be between 
0.00 and 1.00 and therefore percentage data is divided by 100 prior to transformation.  
An example in  R: using the variables in columns 5 – 18, in a data-frame called  mo the 
transformation is:  mosqrt<-sqrt(mo[,5:18]/100).  This sets up a new data-frame containing 
the square root of the independent variables divided by 100. The data-frame is recalculate 
as the inverse sine [arcsine] of the variables, which in  R is:  moarc<-asin(mosqrt).    Each 
observation must be weighted by the number in the denominator of the proportion prior to 



analyzing the variable motrans<-(mo[,19:32]*100).  The standard deviation is the root-mean 
square error derived from the analysis of the transformed variable, which takes into account 
the weighting value.  To back transform the observed effects and confidence limits,  add the 
effect to the mean, take its sine,  then square it and multiply by 100 [Hopkins, 2009].
For multivariate analysis where multi-variate normality is needed  the Aitchison transformation 
is used. The procedure is applicable under conditions that involve log-ratio transformation to 
convert  the  vector  from  simplex  space[Sd]  to  real  number  space  [Rd-1],  using  the 
transformation of the predictor variable vector V1  V2. Where V2 becomes:→

[log(X1/Xd),log(X2/Xd),log(X3/Xd),ln(X4/Xd),......log(Xd-1/Xd),]

with Xd being any suitable variable in the data frame. An example in R in which feldspar is 
used as the divisor and the data-frame is called mo is: 

>moP$Xa <= log(moP$X/moP$Feldspar)
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	In the initial analysis of variables a good procedure is to examine each variable in the data-frame for normality by the eye-ball method using box-plots of each variable. The eye-ball method using box plots can be used to quickly examine replicate samples to see how well they represent a sample taken from the single location.  The box plot shows on a single chart the  range, maximum and minimum value, median, skewness, critical limits and outliers. In the example below Province is designated a factor:
	>ebentonites$Province<-factor(ebentonites$Province) # make Province a factor.
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