Physical Hydrogeology

Problem Set 2

1. A constant-head permeameter has a cross-sectional area of $125 \mathrm{~cm}^{2}$. The sample is 34 cm long. At a head of 15 cm , the permeameter discharges $50 \mathrm{~cm}^{3}$ in 335 seconds.
A) What is the hydraulic conductivity in centimeters per second and feet per day?
B) What is the intrinsic permeability if the hydraulic conductivity was measured at $20^{\circ} \mathrm{C}$?
C) From the hydraulic conductivity value, name the type of soil.
2. A confined aquifer has a specific storage of $7.24 \times 10^{-3} \mathrm{~m}^{-1}$ and a thickness of 30 m .
A) How much water would it yield if the water declined an average of 3.5 m over a circular area with a radius of 240 m ?
B) If porosity is 30% and the compressibility of water is $4.6 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{N}$. What is the compressibility of the aquifer skeleton?
3. An aquifer has 3 different formations. Formation A has a thickness of 8.5 m and a hydraulic conductivity of $22.3 \mathrm{~m} / \mathrm{d}$. Formation B has a thickness of 2.8 m and a conductivity of 145 m / d. Formation C has a thickness of 33 m and a conductivity of $35 \mathrm{~m} / \mathrm{d}$. Assume that each formation is isotropic and homogeneous. Compute both the overall horizontal and vertical conductivities.
4. Below is a set of data representing the hydraulic conductivity of core samples from the same formation. Use Excel to perform the following:
A) Find the arithmetic mean of the data set
B) Find the geometric mean of the data set
C) Make a histogram of the data set
D) Make a histogram of the log transformed data

Sample Number	$\mathrm{K}(\mathrm{m} / \mathrm{s})$
1	4.3×10^{-4}
2	$6 . \times 10^{-3}$
3	2.5×10^{-5}
4	1.2×10^{-4}
5	1.0×10^{-6}
6	7.1×10^{-3}
7	9.1×10^{-6}
8	2.2×10^{-3}
9	4.2×10^{-5}
10	8.7×10^{-4}
11	3.5×10^{-5}

5. The fluid pressure in the screen of a piezometer in a saline aquifer is $7.7 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. The fluid density is $1055 \mathrm{~kg} / \mathrm{m}^{3}$. The elevation of the piezometer screen is 46 m above sea level.
A) Compute the point-water pressure head
B) Compute the fresh-water pressure head
C) find the total fresh-water head
