Ohm'’s Law

Ohm’s law, first presented by German physicist Georg Simon Ohm, states that current

is directly proportional to voltage V and inversely proportional to resistance R, or
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R (5-3)
Consider Figure 5-1. If the battery supplies 9 V, and the resistor has a value of 10 Q, the
current measured by the ammeter will be 0.9 amperes. Or, if resistance is increasing, it will
take an increasing voltage to maintain the same current.
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Figure 51 A simple electrical circuit illus-

trating standard symbols for commaon compo-
Voltmeter nents.

Resistance and Resistivity

This behavior suggests that the resistances of the resistors in Figure 5-3 depend on
their length and cross-sectional areas and also to a fundamental property of the material
used in their construction, which we term resistivity and denote by p. Based on our discus-
sion, we can say that

(5-4)
or

(5-5)
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Figure 53 Two resistors of different
lengths [ and different cross-sectional arcas A

Darcy’s Law and Ohm’s Law

« q = -k(dh/dl)
— k = hydraulic conductivity
—h =head
— | = distance
* i = (1/R)AVIL
AV = difference in potential over distance L
R = Resistance (inverse of conductivity)




The resistivity unit is resistance - length, which is commonly denoted by € - m. Conduc-
tance is the inverse of resistance, and conductivity is the inverse of resistivity.

Copper has a resistivity or 1.7 x 10 Q « m. What is the resis-
tance of 20 m of copper wire with a cross-sectional radius of
0.005 m? Quartz has a resistivity of 1x 10 Q » m. What is the
resistance of a quartz wire of the same dimensions?

R = r(/A) = 1.7e-8%(20/3.14*(0.005)2)

We now use Eq. 5-6 to determine the potential at P,. In determining the potential at a
point, we compare it to the potential at a point infinitely far away, which by convention is
arbitrarily defined to equal zero. The most direct way to determine V is o integrate Eq. 5-6
over ts distance D to the current electrode to infinity, or

- ip [~ dr _ _ip
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(Van Nostrand and Cook, 1966, p. 28). Equation 5-7 is the fundamental equation

Figure -4 Diagram ilustrating symbols and configuration used to determine potental at

P, for a single point source #t C,. The curtent 5 is at infinity. The two
equipotental surfaces shown are separated by the distance dr.

The potential at point P, is determined by using Eq. 5-7. The effect of the source at
C,(+) and the sink at C,(-) are both considered, and, thercfore,

ip ip

Vo = 4| 5-8
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Expressing 7, and r, in terms of the x-z<coordinate system illustrated in Figure 5-5, we
rewrite Eq, 5-8 as
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Figure 5-5 Diagram illustraing symbols and configuration used to dtermvioe potential at
P, for acurrentsource €, and sink C;




Current Penetration is a function of
separation of current electrodes

Along a vertical plane midway between the two current electrodes, the
fraction of the total current i, penetrating to depth z for an electrode separation of d is given by

. 2, 2z
” 5-10;
i tan ( j (5-10)
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Figure 57 Plot of results in Table 5-2. Depth is z and current electrode separation s d.

The data points illustrate the extent to which cument penetrates into a homogeneous,
isotropic Earth.




Figure 5-9 illustrates two potential electrodes P, and P, that
are located on the surface as are the current clectrodes. Using the cquation we have already
derived to determine the potential at a point due to a source and a sink, we obtain the poten-
tial difference by determining the potential at one potential electrode P; and subracting

from it the potential at P,. Using Eq. 5-8 we determine that
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Figure 5.9 Diagram used to determine potential difference at two potential electrodes P,
and P,

‘Therefore, the potential difference AV equals

—v, - ip _ _ip | _(dp__ _ip 513
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or
Av=i(l_lfi+ij (5-14)
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In the resistivity method, current is entered into the ground, potential difference is mea-
sured, and resistivity determined. Because resistivity is the unknown quantity we normally
hope to determine, we solve Eq. 5-14 for p and obtain

274V,
i

(5-15)

P

Figure 5-9. Diagram used to determine potential difference at two potential electrodes P,
and P,

Perhaps we should test our understanding of Eq. 5-15 by applying it to a known situa-
tion. Let's assume we can place potential electrodes anywhere along the surface, as illustrat-
ed in Figure 5-9. Further, we will use the values in Table 5-1 for our test. Figure 5-10(a)
presents one possible measurement, and Figure 5-10(b) another, Substituting the values in
Figure 5-10(a) produces Eq. 5-16, which results in a resisivity value of 50 Q - m. A glance
at the model values used to produce Table 5-1 confirms that the resistivity is 50 £ - m.
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Figure 510 Measuring potential differcnce to determine p. Potential values for th indi-
cated spacings are taken from Table 51 Solutions are prescaied in the fext (Eqs. -16 and
S,




Figure 5-10  Measuring potentil difference to determine p. Potental vaues for the indi-
" taken from Tuble 51 Sol A in the ext (Eqs. 5-16 and

1)

Equation 5-17 uses the values illustrated in Figure 5-10(b). As expected, evaluation of the
equation gives 50 Q - mas the resistivity.

27 (6.41V)
Tampere

=50Q-m (17
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‘These calculations confirm that if we produce a current, measure the electrode spacings,
and determine the potential difference, we can arrive at a value for the resistivity of the sub-
surface materials.

tribut

Current

An important goal in this section is to gain a qualitative understanding for the pattern of
current distribution in the subsurface when a single horizontal interface separates materials of
different resistivities. Our first step toward this goal is to employ an equation that tells us the
fraction of the current that penetrates below the interface. This current fraction is given by

.o 2p Sonlm 2(2n + 1)z 5.18
ip = ﬂp;(l+k),§;k{2 tan™ | === (5-18)
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Current Flow Lines and Current Density

The preceding discussion presents us with sufficient information to make a qualitative
assessment of current flow lines and, more importantly, current density distribution when a
horizontal interface is present. As a first step in this process, we must investigate what hap-
pens to the orientation of flow lines and equipotentials when crossing a boundary separating
regions of differing conductivities or resistivities. Hubbert (1940, p. 844-846) demonstrated
that the flow lines follow a tangent relationship such that

tan 6, _ P

tan 6, P G-19)

where 6 and p are as defined in Figure 5-12(a). If the resistivity p, of the deeper material is
greater, then the flow lines bend in toward the normal to the interface (Fig. 5-12(b)) and, as
a consequence, are more widely spaced. However, if the reverse is true, as in Figure
5-12(c), the flow lines bend away from the normal, become oriented more parallel to the
interface, and are closer together.
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Apparent Résis‘li ity

When we derived Eq. 5-15, we assumed a homogencous, isotropic subsurface. As demon-
strated previously, any combination of electrode spacings and current results in a potential
difference that provides the correct value for the resistivity of the subsurface (as of course
should be the case if our equation is correct). Once the subsurface is nonhomogeneous, the
value determined for the resistivity is extremely unlikely to equal the resistivity of the mate-
rial in which the electrodes are inserted. Equation 5-15 thus defines a different quantity,
which is termed the apparent resistivity p,. Inasmuch as nonhomogeneity is the rule, we
write

_ 27V 1
el b s G20
h n i 13

The question we now face is, What does this equation tell us? How do we interpret apparent
resistivity values in terms of the subsurface geology?
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Suppression and Equivalence
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Horizontal Survey
across a Vertical Interface
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Figure 5-26 Hemispherical sink with diameter substantially greater than electrode spac-
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Figure 528 Schematic of main elemonts of elecical-reshuivity surveying sywem
L POWES sou pcter, voltmeler, and dii device.
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Field Methods

Resistivity of Earth Materials

Material Resistivity (©-m)
Wet to moist clagey soil and wet clay Isto 10s

Wet to moist silty soil and silty clay Low 10s

Wet to moist silty and sandy soils 10s to 1005

Sand and gravel with layers of silt Low 1000s
Coarse dry sand and gravel deposits High 1000
Well-fractured to slightly fracturcd rock with moist-soil-filied cracks 100s

Slightly fractured rock with dry, soil-filled cracks Low 1000s
Massively bedded rock High 1000s

Curve Matching
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Equivalence and Suppression

w

Model 1 -3 m, 10 Ohm-m
10 m, 100 Ohm-m
inf., 1 Ohm-m
Model 2 - 3 m, 10 Ohm-m
20 m, 50 Ohm-m
inf., 1 Ohm-m

Model 1 — 1 m, 10 Ohm-m
1m, 40 Ohm-m
1m, 10 Ohm-m
7 m, 40 Ohm-m
inf., 1 Ohm-m

Model 2 - 1 m, 10 Ohm-m
13 m, 20 Ohm-m
inf., 1 Ohm-m

3D survey of Stream Channel

(6.1 m spacing)
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Air Filled Cavern/Limestone
(a=30.48 m)
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Horizontal Survey of Faults
(a=30.48m)
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