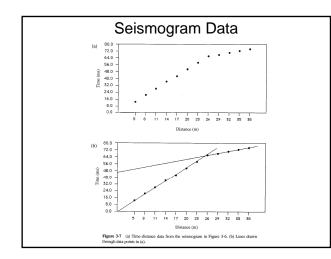
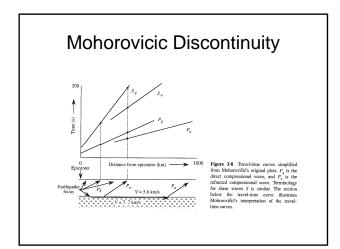
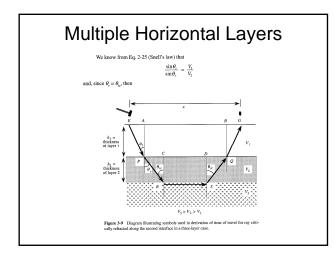
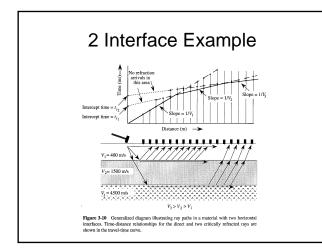


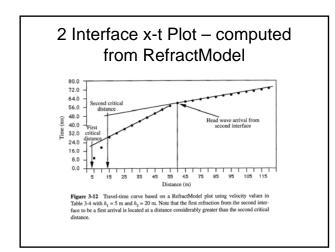
<section-header><section-header><section-header><text><text><equation-block><text><equation-block>

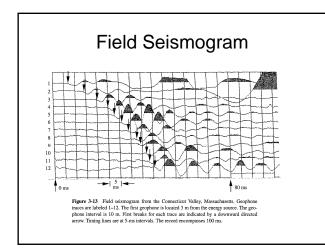


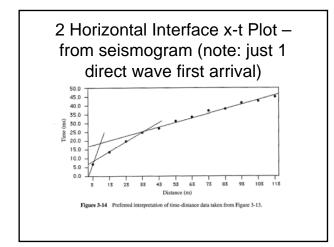


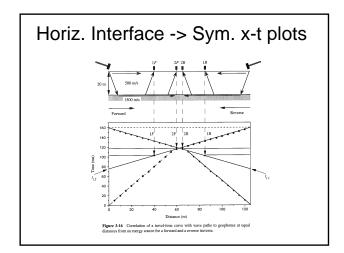


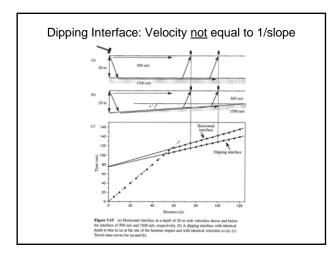


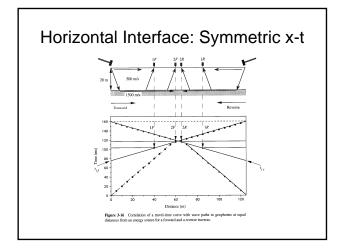




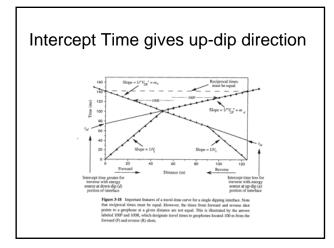


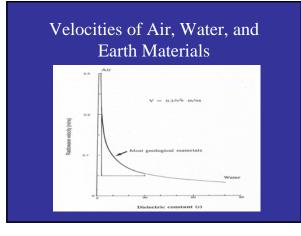






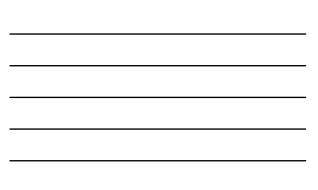


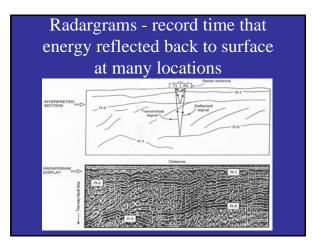


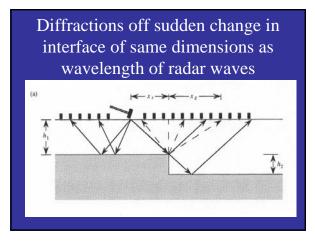

Velocity = Frequency x Wavelength Frequency = 10 to 1000 MHz Wavelength = cm to meters

The speed of radiowaves in a material ($V_{\rm m}$) is given by:

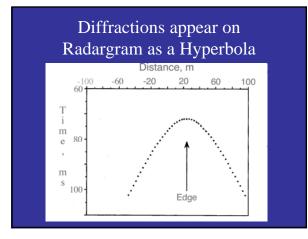
$V_{\rm m} = c/\{(\varepsilon_{\rm r}\mu_{\rm r}/2)\left[(1+P^2)+1\right]\}^{1/2}$

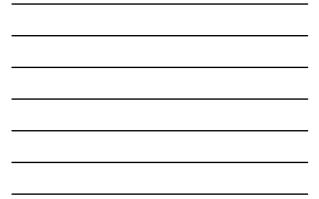

where c is the speed of light in free space, z_r is the relative dielectric constant, and μ_r is the relative magnetic permeability (=1 for non-magnetic materials). P is the loss factor, such that $P = \sigma/\omega z_r$ and σ is the conductivity, $\omega = 2\pi f$ where f is the frequency, ε is the permittivity = $\varepsilon_r \delta_0$, and ε_0 is the permittivity of free space (8.854 $\times 10^{-12}$ F/m). In low-loss materials, $P \approx 0$, and the speed of radiowaves,

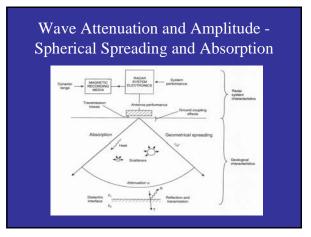

In low-loss materials, $P \approx 0$, and the speed of radiowaves, $V_m = c/\sqrt{e_r} = 0.3/\sqrt{e_r}$.

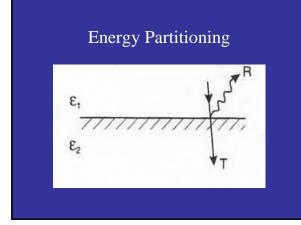


77 ε₂

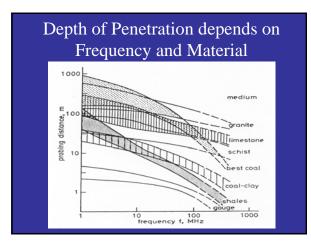




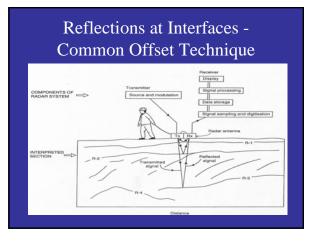




Amplitude of Reflection


The amplitude reflection coefficient is:

$$R = \frac{(V_1 - V_2)}{(V_1 + V_2)}$$

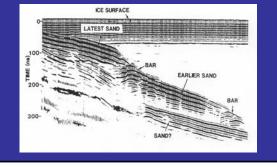

where V_1 and V_2 are the radiowave velocities in layers 1 and 2 respectively, and $V_1 < V_2.$ Also:

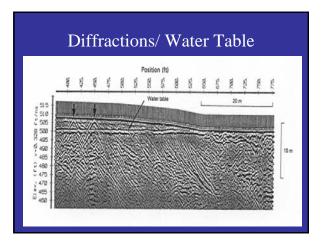
$$R = \frac{\sqrt{\varepsilon_2} - \sqrt{\varepsilon}}{\sqrt{\varepsilon_2} + \sqrt{\varepsilon}}$$

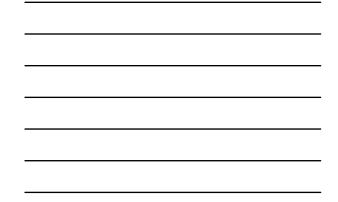

where ε_1 and ε_2 are the respective relative dielectric constants (ε_i) of layers 1 and 2, applicable for incidence at right-angles to a plane reflector. Typically, ε_i increases with depth.

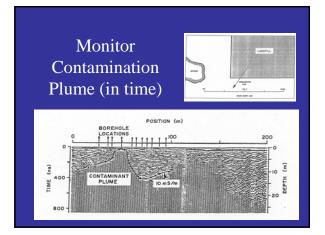
Dielectric Constant & Velocity

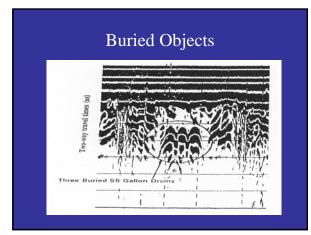
Water fload) Hi 33 Pater load) HI 33 Pater load) HI 33 Pater load) HI 32 Pater load) HI 33 Temperature L HI Temperature L HI Set load L HI Temperature L HI Set load L HI Set load L HI Countil stati 60% HI HI Set load L HI Set load HI	Material	4,	P(mm/m)
Water level 16 37 Polar alow 1.4-3 914-322 Tempona level 2.3 16 Tempona level 2.3 16 Station 2.4 160 Station 2.4 160 Station 2.4 160 Station 2.5 16 Station 1.4 10 Station 2.5 16 Station 1.5 16 Station 1.5 16 Mathia 1.3 13 Approximatival 1.3 13 Station 1.5 16 Mathia 1.3 13 Station 1.5 100 Station 1.5 100 Station 1.5 100 Station 1.5 <td>Air</td> <td></td> <td></td>	Air		
Paint seem 1.4-3 194-32 Pharis 3.3.1 168 Particip 3.2 167 Pression 3.2 167 Pression 2.4 170 Pression 2.4 170 Pression 2.4 170 Constantiant (M) 2.4 170 Constantiant (M) 2.4 170 Stand (AT) 3.4 170 Stand (AT) 3.6 125 170 Stand (AT) 3.6 125 160 170 Stand (AT) 3.6 13 181 180 170 Marcia 1.6 10 13 181 180 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180 170 180			
Diar ise 3-3.13 164 Transport bak ise 2.2 4.3 Parabarer taks ise 4.4 120 Static 2.5 4.8 120 Parabarer taks ise 4.4 120 124 Static 2.5 4.8 120 Constability 3.4 120 124 Static 2.5 3.5 40 Constability 3.4 125 124 Constability 3.4 125 125 Constability 3.4 12 127 Constability 3.2 12 126 Constability 3.2 12 127 Paraonel land 13 13 12 Paraonel land 5.4 106 13 Constati 5.4 106 13 Distation 5.4 106 13 Static 5.4 106 13 Static 5.4 106 13	Water (sea)	81	33
Yamponte los 1.5 167 Prenamentales 2.4 150 Sel ior 2.5.4 78-107 Sel ior 2.5.4 78-107 Sel ior 3.4 53-107 Sel ior 5.5 58-300 Sel ior 5.5 58-300 Sel ior 5.5 58-300 Char (work) 5.5 58-300 Char (work) 5.5 58-30 Char (work) 8.5 15 16-10 Marchan (work) 1.2 16 16 Agronhund (work) 1.3 71 16 Other (work) 8.6 1.3 71 Debasite 5.8 100-113 13 Statistic (work) 7 13 13 13 Statior 5.8<	Polar snow		
Parais 3.2 12 Station 2.5.4 10-10 Station 2.5.4 70-17 Station 1.4 105-50 Station 5.5.4 10-17 Station 1.5 10-17 Station 10 9.5 Station 10 10-17 Carl station (sing) 3.5 10-17 Station 10 10-17 Carl station (sing) 3.5 10-17 March 10 10-17 Waren brain 10 10-17 March 10 10-17 Distation 10-17 10-17 Distation 5.4 100-113 Distation 6.4 100-113 Distation 7 113 Distation 6.4 10-113 Distation 6.4 10-113			
Timbuster laks ise 4 100 Station 2.5-4 33-17 Paramillow 14 106-500 Canard station (Jacobian) 3-6 3-3-170 Station 2.5-30 3-5-40 Constrained (Jacobian) 3-170 3-170 Constrained (Jacobian) 3-170 3-170 Constrained (Jacobian) 3-173 172 Parametal land 13 377 Parametal land 13 377 Parametal land 3-40 352 Distation 5-8 106-1120 Distation 5-8 106-1120 Distation 5-9 106-1120 Distation 5-7 106-1120 Distation 5-7 103 Distation 5-7 103 </td <td>Temperate ice</td> <td>3.2</td> <td>167</td>	Temperate ice	3.2	167
Sanisa 2.5.4 The 1.7 Premolect 1.4 106-300 Canardi acade (hy) 10 40 Sanisati acade (hy) 2.5 3.5-40 Sanisati acade (hy) 2.5 3.5-40 Sanisati acade (hy) 2.5 3.5-40 Char (hono) 8.1-1 8.6 Char (hono) 1.2 1.6 Approximation (hand) 1.3 7.6 Approximation (hand) 1.6 7.5 Approximation (hand) 6.8 106-110 Debation 6.8 106-110 Standard (hono) 7 1.13 Standard (hono) 7 1.13 Standard (hono) 7 1.13 Standard (hono) 7 1.13 7		3.2	167
Jonathom 1-4 106-500 Cantal state (dry) 3-6 123-170 State (dry) 3-6 123-170 State (dry) 3-6 123-170 State (dry) 3-1 4-10 Clay (res) 5-1 6-10 Mach Anno 12 60 Mach Anno 12 60 Parcent and 13 13 Parcent and 13 13 Parcent and 13 13 Description 5-4 100-113 Description 5-7 13 Description 6-7 13 Description 6-7 13 Descrip	Freshwater lake ice		
Canadi scale (day) 10 43 Stada (em) 3-6 125-170 Stada (em) 25-50 540 Stada (em) 25-50 540 Cole (real) 8-10 15 Carly (real) 1 16 Carly (real) 8-10 17 Approximation (and the state) 17 17 Approximation (and the state) 18 19 Thermore (land) 18 19 Determine 7-9 100-120 Determine 5-8 196-120 State (real) 5 196-120 State (real) 5 196-120 State (real) 7 13 State (real) 4 5 State (real) 4 5	Sea ice	2.5-8	78-157
Sand (day) -3 -6 15 105 Sand (day) -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -15 -6 -16 -7 -7 -7 -13 -5 -6 -15 -6 -16 -7 12 -7 -7 13 -7	Permafrost	1-8	106-300
Sand (dry) 3-6 125-179 Silvenio 100 910 Clay (res) 8-15 641 Mixela 12 66 Mixela 12 66 Percent land 13 71 Percent land 13 71 Debatine 5-8 100-113 Debatine 5-8 100-113 Debatine 6-8 100-113 Debatine 6-8 100-113 Stationic (were) 7 113 Stationic (were) 7 113	Countal sand (drs)	10	95
Stadi (em) 25-30 35-40 Directo 31-35 36-10 Directo 3-3 15-30 Chay and Keyn 3-13 17-30 Directo 3-3 17-30 Particular 13 37 Particular 13 37 Directo 3-4 15-30 Directo 3-4 10-30 Directo 5-4 106-120 Directo 5-7 100-120 Directo 5-8 106-120 Directo 5-8 106-120 Directo 5-7 100-130 Directo 5-7 100-130 Directo 7 113		3-6	120-170
Shi renti 10 95 Carly roll 3-15 50 Marka 12 16 Marka 13 77 Arcegar boxic 16 77 Arcegar boxic 16 77 Arcegar boxic 16 77 Arcegar boxic 16 78 Diamoticin 5-4 106-120 Shate (web) 7 103 Shate (web) 7 113 Shate (web) 7 113		25-30	55.60
Chay (new) 8-15 86-10 Chay and Lify) 3 173 Manh 15 87 Patoronal land 15 87 Patoronal land 15 87 Orasite 5.4 00-120 Gravite 5.4 100-120 Lineatorie 5.4 100-130 Banal (weit) 8 106 Shade (weit) 8 106 Continuer (wett) 4 5 113			
Clar soil (drs) 3 (73 Muth 12 86 Apricultural land 2 15 73 Apricultural land 2 15 73 Average hold 7 15 73 Average hold 7 15 74 Granit 5-4 106-125 Lineatore 7-9 100-113 Delonite 63-8 106-115 Bank (wet) 8 106 Shafe (wet) 8 112 Cond 4 5 1134-100			
Marin 12 86 Agricultural land 15 77 Partoni land 13 83 Average holf 16 75 Granite 5-8 100-120 Linestone 7-9 100-115 Basal (wet) 8 106 State (wet) 6 112 Cold 4-5 134-150		1	
Agricultural land 15 77 Pattoral land 13 83 Average loof 16 85 Granite 3-8 106-120 Delognite 5-8 100-120 Baala (wet) 6.8 100-115 Baala (wet) 8 106 Column (wet) 4 102 Column (wet) 4-5 132			
Patorelland 13 83 Average noll 16 75 Granite 5-8 106-120 Linestore 7-9 100-115 Basalt (vert) 8 106 Shade (vert) 8 106 Col 7 112 Col 4-5 134-150		15	
Average 'soil' 16 75 Granite 5-8 106-120 Linestone 7-9 100-113 Delomits 48-8 100-113 Delomits 48-8 100-113 State (wet) 7 113 Standstore (wet) 6 112 Coal 4-5 134-150			
Linestone 7-9 100-113 Dolomin 6.8-8 106-113 Basalt (wrt) 8 106 Shale (wrt) 7 113 Sandstore (wrt) 6 112 Coal 4-5 134-150	Average 'soil'		75
Linestone 7-9 100-113 Dolomin 6.8-8 106-113 Basalt (wrt) 8 106 Shale (wrt) 7 113 Sandstore (wrt) 6 112 Coal 4-5 134-150	Granite		106-120
Dolomin 63-8 106-115 Basalt (wet) 8 106 Shale (wet) 7 113 Sandstore (wet) 6 112 Coal 4-5 134-150	Limestone		100-113
Basalt (wet) B 106 Shale (wet) 7 113 Sandstone (wet) 6 112 Coal 4-5 134-150		6.8-8	106-115
Shale (wet) 7 113 Sandstone (wet) 6 112 Coal 4–5 134–150			
Sandstone (wet) 6 112 Coal 4-5 134-150			
Coal 4-5 134-150			
	Coal		
	Ouartz	43	145
Concrete 6-30 55-112			
	Asphalt		
	PVC, Epoxy, Polyesters		

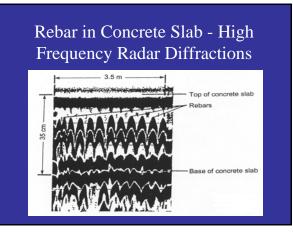

Resolution depends on frequency and the material

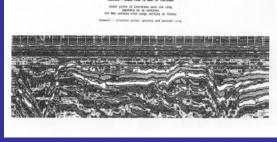

Theoretical naterials at th		for	two
	 nna frequer (MHz)	ncy	_

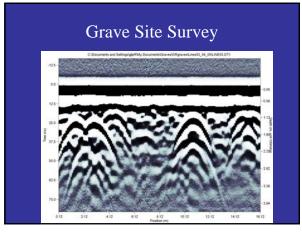

	120	500	900
Soil			
Wavelength (cm)	62.5	15	8
Resolution (cm)	15.6	3.75	2
Bedrock			
Wavelength (cm)	92	22	12
Resolution (cm)	23	5.5	3

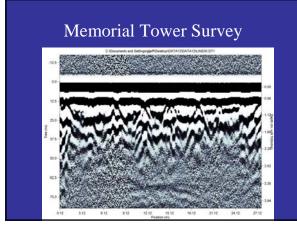

-	

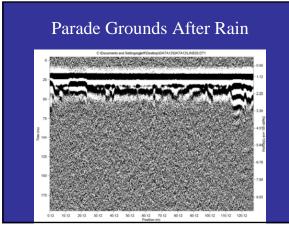


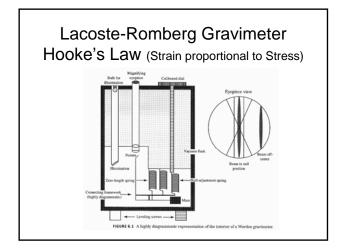


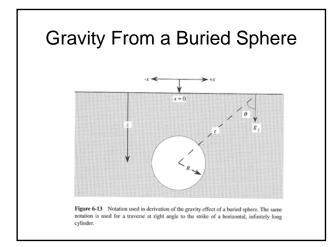





Buried Roman Road with ditches and cart ruts







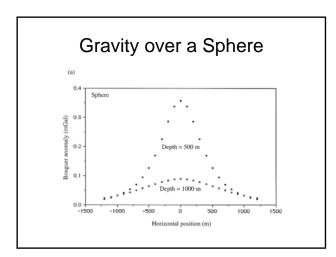


TABLE 6.2 EXAN	IPLE OF GRAVIT	Y REDUCTION	
Observed gravity	980658.67	Observed gravity	980658.67
Normal gravity	980674.39	Latitude (ø)	45.62
Free-air correction	30.93	Elevation (m)	100.24
Bouguer correction	11.22	Bouguer density (g/cm ³)	2.67
Free-air anomaly	15.22		
Bouguer anomaly	4.00		
Elevation error (m)	0.33	Latitude error (ø)	0.01
Bouguer anomaly error	0.06	Bouguer anomaly error	0.90
	(All gravity value	es are in milliGals.)	

