Mechanical Energy: Kinetic

4.2 Mechanical Energy

There are a number of different types of mechanical energy recognized in classical physics,
Of these, we will consider kinetic energy, gravitational potential energy, and energy of
fluid pressures.

A moving body or fluid tends to remain in motion, according to Newtonian physics,
because it possesses energy due to its motion called kinetic energy. This energy is equal to
one-half the product of its mass and the square of the magnitude of the velocity:

Ey = Yamo? @1
where
Ey is the kinetic energy (ML?/T? slug-t*/s or kg:m*/s?)
v is the velocity (L/T; ft/s or m/s)
m is the mass (M; slug or kg)

1f m is in kilograms and v is in meters per second, then Ey has the units of kg:m®/s™ or
newton-meters. The unit of energy is the joule, which is one newton-meter. The joule is
also the unit of work.

Mechanical Energy: Gravity

Imagine that a weightless container filled with water of mass m is moved vertically
upward a distance, z, from some reference surface (a datum). Work is done in moving the
mass of water upward. This work is equal to

W=Fz=(mg)z 4.2

where

W is work (ML?/T

z is the clevation of the center of gravity of the fluid above the reference
elevation (L; ft or m)

lug-ft*/s* or kgm? /5%

mi is the mass (M; slugs or kg)
g is the acceleration of gravity (L/T7; ft/s” or m/s%)
F isa force (ML/T slug-ft/s* or kgm/s%)
The mass of water has now acquired energy equal to the work done in lifting the mass.

This potential energy, due to the position of the fluid mass with respect to the datum.
E, is gravitational potential energy:

W= .3

Mechanical Energy: Pressure

A fluid mass has another source of potential energy owing to the pressure of the sur-
rounding fluid acting upon it. Pressure is the force per unit area acting on a body:

P=F/A 7]
where

P is the pressure [M/LT? slug-ft/s* ar (kgm/s")/m?]

A s the cross-sectional area perpendicular to the direction of the farce (L; £t or m)

The units of pressure are pascals (Pa), or N/m® A N/m® s equal to a N-m/m?, or ]/’
Pressure may thus be thought of as potential energy per unit volume of fluid.

For a unit volume of fluid, the mass, m, is numerically equal to the density, p, sine
density is defined as mass per unit volume. The total energy of the unit volume of fluid i
the sum of the three ki itati and fluid ENCIEY:

Ey, = Y2pt® + pgz + P [LE:]




Bernoulli Equation

1f Equation 4.5 is divided by p, the result is total energy per unit mass, Ey:

+ (4.6)
which is known as the Bernoulli eq f the | Ili equation may be found
i textbooks on fluid mechanics (¢ ger, perger, Wilberg, and Eshleman, 1998)
For steady flow of a frictionless, incompressible fluid along a smooth line of flow, the
sum of the three compenents is a constant. Each term of Equation 4.6 has the units of (L/T)%
vl r
3 + gz + p = gonstant 4.7
seeady flow indicates that the conditions do not change with time. The density of an in-
compressible fluid would not change with changes in pressure. A frictionless fluid would
not require energy to overcome resistance to flow. An ideal fluid would have both of these
characteristics; real fluids have neither one, Real fluids are compressible and do suffer fric-
tional flow losses; however, Equation 4.7 is useful for purposes of comparing the compo-
nents of mechanical energ
1f each term of Equation 4.7 is divided by g, the following expression results:
v PR
% oM

constant (4.8)

Example

Ata place where g = 9,80 m/s* the fluid pressure is 1500 N/m?; the distance above a reference el-
evation is 0.75 m; and the fluid density is 1,02 X 10° kg/m®. The fluid is moving at a velocity of
L0x 10”* m/s. Find E,,,.

a
2

E

P,
& »

PR 1500
% 0. 1500 N/m
9.80 m/s? % 075 m + T

= 735m%/s” + 147 m*/s* + 5.0 X 107" m?/s*
= 5.6 m/s*
Kinetic Energy is small!

The total energy per unit mass of 8.8 m?/s? is almost exclusively in the pressure and gravi-
tational potential energy terms, which are 13 orders of magnitude greater than the value of ki-
netic energy.

Hydraulic Head

» FIGURE 4.1
Piezaemeter measuring fluid pressure and the elevation

of water,
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The preceding problem shows that the amount of energy developed as kinetic energy
by flowing ground water is small. The velocity of ground water flowing in porous media
under natural hydraulic gradients is very low. The example velocity of 107% m/s results in
a movement of 30 m/y, which is typical for ground water,

Veelocity components of energy may be safely ignored in gmtﬁnd-wntcr flow because
they are so much smaller than the other two terms. By dropping v°/2g from Equation 4.8,
the total hydraulic head, b, is given by the formula

h=z+ L 4.5
g




Hydraulic Head

» FIGURE 4.2
Total head, h, elevation head, , and pressure head; b, T
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Figure 4.2 shows the components of head. The head is the total mechanical energy per
unit weight of water. For a fluid at rest, the pressure at a point is equal to the weight of the
overlying water per unit cross-sectional area:

P = pgh, 4.10)
where i, is the height of the water column that provides
Equation 4.9, we see that

head. Substituting into

.11
The total hydraulic head is equal to the sum of the elevation head and the pressure
The elevation and pressure heads, when used in the form of Equation 4.11, correlate
with energy per unit weight of water with dimensions L.

Therebore,

Assume that g = %50 m,/s" and p

1 hoad at50 m belorw ses bevel s grester
Soragh the prrssure hesd st 10

Hydraulic Head — Example 2

The following data were collected at a nest of piczometers [several piezometers of different
depths located within a few feet (1 to 2 m) of each other]:

A B [
Elevation at surface (m as.1) ' 25 ns 225
Depth of piezometer (m) 150 100 7
Depth to water {m below surface} 80 77 &0

Part A:  ‘What is the hydrauli

ad at A, B, and C7

Hydraulic head is elevation of the water in the piczometer. It is found by subtracting the
depth to water from the surface elevat

A:145m B: 148 m C:165m




Hydraulic Head — Example 2

Part B: What is the pressure head at A, B, and C?

Pressure head is the height of the water in the well above the depth of the piezometer, It is
found by subtracting the depth to water from the depth of the piezometer from the surface.

A:70m B:23m  C:15m
Part C:  What is the elevation head in each well?

Elevation head is the height of the measuring point above the datum. In this case the datum
is mean sea level and the elevation head is found by subtracting the depth of the piezometer from
the surface elevation.

A:75m B:125m C:150 m

Notice that the total head found in part A s the sum of the pressure head found in part Band
the elevation head found in part C.

Part D:  Whatis the vertical hydraulic gradient between the piezometers?

The hydraulic gradient is the difference in total head divided by the vertical distance be-
tween the two piezometers.

From Ato pi B the diffe in the total head is 148 m~145 m and the
vertical distance is 50 m. The hydraulic gradient is (3 m)/(50 m), or 0.06, and the direction is
downward as the head in B, the shallower piezometer, is greater.

From piezometer B to piezometer C the difference in total head is 165 m~148 m and the ver-
tical distance is 25 m. The hydraulic gradient is (17 m)/(25 m), or 0.68. This gradient is also
downward.

|
Consider piezometer 1 of Figure 4.3, which is filled with point water of density p,. The
point-water pressure head is the height of the point water in the piezometer, . The pres-
— ——— sure at Py may be found from |:| |:|
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4,5 Force Potential and Hydraulic Head

In Equation 4.6 we showed the total mechanical energy per unit mass to be equal to the sum
of the kinetic energy, elevation energy, and pressure. This total potential energy has been
termed the force potential and is indicated by the capital Greek letter phi, & (Hubbert 1940):

P pgh,
P=gz+—=gz+2L=g(z+} (4.16)
g2t =g T R gzt h)

Since z + h, = h, the hydraulic head.

@ = gh 4.17)

Fluid Flows from High Head to Low Head
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A FIGURE 4.5
Apparatus to demonstrate how changing the slope of a pipe packed with sand will change the

components of elevation, z, and pressure, hg heads. The direction of flow, Q, is indicated by the arrow.

4.6.1 Darcy’s Law in Terms of Head and Potential

In Section 3.5 it was shown that flow through a pipe filled with sand is proportional to the
decrease in hydraulic head divided by the length of the pipe. This ratio is called the hy-
draulic gradient. It should now be apparent that the hydraulic head is the sum of the pres-

sure head and the elevation head. Exp 1 in terms of hydraulic head, Darcy’s law is
dh
= -KAS 18
A il (4.18)

Since the fluid potential, ®, is equal to gh, Darcy’s law can also be expressed in terms
of potential as (Hubbert 1940)
__KA@
g dl
As expressed here, Darcy’s law is in a one-dimensional form, as water flows through

the pipe in only one direction. In later sections, we will examine various forms of Darcy’s
law for two and three directions.

.19




Validity of Darcy’s Law

A FIGURE 4.6
A, Flow paths of rolecules of water in laminar flowe B, Flow patis of mrclecules of waber in turbulent flow,

The Reynolds number relates the four factors that determine whether the flow will be
laminar of turbulent (Hornberger, Raffersperger, Wilberg, and Eshleman, 1998):

Rwf¥ (4.20)
"

where
R is the Reynolds number, dimensionless

@ is the fluid density (M/L% kg/m®)

4 is the discharge velocity (L/T; m/s)

a

is the diameter of the passageway through which the fluid moves (L; m)

*

is the viscosity (M/TL; kg/sm)

Validity of Darcy’s Law

water at 15C, what is the.

ao= 14X 10 ¥ g/sem
Comvert umits to kilograms, meters, and secords:

d = 0050 cm X 0.01 m 00005 m

PERITES m % 0,001 g/ * 100 cm/m

-
"
Ry

e

the maximum v

by s

1% LU % 107 kglsm

0559 % 10" kg/m’ % DDOS m

0.0023 myfs

Darcy’s Law will be valid for discharge velocities equal to or bess than 0.0023 m/s.

Specific Discharge and Average
Linear Velocity

V = Q/A = -K(dh/dl)

V. = (Q/n A = -(K/n,)(dh/dl)

where
v, is the average linear velocity (L/T; cm/s, ft/s, m/s)

n, is the effective porosity (dimensionless)




Equations of Groundwater Flow

4 FIGURE 4.7
Contral valurms Tor flow thraugh a confined
auifer.

We will consider a very small part of the aquifer, called a control volume. The three
sides are of lengths dx, dy, and dz, respectively. The area of the faces normal to the x-axis is
dydz; the area of the faces normal to the z-axis is dxdy (Figure 4.7).

Assume the aquifer is homogeneous and isotropic. The fluid moves in only one direc-
tion through the control volume. However, the actual fluid motion can be subdivided on the
basis of the components of flow parallel to the three principal axes. If 4 is flow per unit cross-
sectional area, p, is the portion parallel to the x-axis, etc., where p,, is the fluid density.

Equations of Groundwater Flow

The mass flux into the control volume is p,, dydz along the x-axis. The mass flux out of

. a A
the control volume is p,4, dydz + = (puff) dx dydz. The net accumulation in the control vol-
ume due to movement parallel to the x-axis is equal to the inflow less the outflow, or

3
~ax (Puf]x) dx dydz. Since there are flow components along all three axes, similar terms can be

determined for the other two directions: :9 (pufty) dy dxdz and — :z (pudz) dz dxdy. Com-

bining these three terms yields the net total accumulation of mass in the control volume:

a ] ]
= +—= + = pyf. Jda 25
(ax Puflx a Pully T 5, ﬂ,,qz)d"(dydz 4.25)

The volume of water in the control volume is equal to n dx dydz, where n is the poros-
ity. The initial mass of the water is thus p,,n dx dydz. The volume of solid material is (1 - 1)
dx dydz. Any change in the mass of water, M, with respect to time (f) is given by
M

a
S = o (e dxdydz) @26)

Equations of Groundwater Flow

As the pressure in the control volume changes, the fluid density will change, as will
the porosity of the aquifer. The compressibility of water, B, is defined as the rate of change
in density with a change in pressure, P:

q
pap = 22e @27)
Pu
The aquifer also changes in volume with a change in pressure. We will assume the
only change is vertical. The aquifer compressibility, o, is given by

adP = a0z (4.28)
dz
As the aquifer compresses or expands, n will change, but the volume of solids, V,, will
be constant. Likewise, if the only deformation is in the z-direction, d(dx) and d(dy) will
equal zero:

dv,

= d[(1 - n) dx dydz] @29




Equations of Groundwater Flow

d[(1-n)dz] =0
Differentiation of Equation 4.29 yields

dzdn = (1 = n)d{dz) {4.30)
and

(1 — md(az)
dz

dn =

The pressure, F, at a point in the aquifer is equal to Py, + py, gh, where Py i
ic pressure, a constant, and f is the height of a column of water above the point.
dP = pg dh, and Equations 4.27 and 4.28, become

Are = Pl g ) 4.32)
and
diidz) = dzalp,, g dh) (433)
Equation 4.31 can be rearranged if d{dz) is replaced by Equation 4.33,

dn = (1 = map,g dh (4.34)

Equations of Groundwater Flow

1f dx and dy are constant, the equation for change of mass with time in the control vol-
ume, Equation 4.26, can be expressed as

aM [ i
-] g ®

an s |
o * pudz gy iz SO |ty (4.35)
Substitution of Equations 4.32, 4.33, and 4.34 into Equation 4.35 yields, after minor manip-
ulation,

aM

. ah
e (apag + nBpag)p, dx dydz o 14.36)

The net accumulation of material expressed as Equation 4.2
the change in mass with time:

#(q,) (g, al . ah
MR Podxdydz = (apg + nfpug)p, dx dydz —1: 37

is equal to Equation 4.36,

ax ay

Equations of Groundwater Flow

N h ot R Whrensch a et

From Darcy’s law,
(1.35)

439

and

440

Substituting these into Equation 4.37 yields the main equation of flow for a confined
aquifer:

E ] e
+ } = (apugt + nPpug)y, (4.41)




Equations of Groundwater Flow

Far two-dimensional flow with no vertical components, the equation can
be rearranged and terms introd quations 3-32 and 3-33 for the storativity, [S =
Mapyg + nfpyg)) and from Equation 3.30 for the transmissivity, (T' = Kb), where b is the
aquifer thickness;

#h #h Sak @
it ay Tt 42)

In steady-state flow, there is no change in head with time, for example, in cases when
there is no change in the position or slope of the water table. Under such conditions, time
is not an independent variable, and steady flow is deseribed by the three-dimensional par-
tial differential equation known as the Laplace equ.

#ho Fh #h_ o wan
af " ay

Equations of Groundwater Flow:
Leaky Aquifer

The leakage rate, o rate of accumulation, is designated as e, The general equation of
flow (in two dimensions, since horizontal flow was assumed) is given by

.52 (a.44)
T at N

The leakage rate can be determined from Darcy's law. If the head at the top of the
aquitard is by and the head in the aquifer just below the aquitard is k, the aquitard has a
thickness b" and a conductivity (vertical) of K

(g = K)

e =K (4.45)

Equations of Groundwater Flow:
Unconfined Aquifers

In the case of an un-
confined aquifer, the saturated thickness can change with time. Under such conditions, the
ability of the aquifer to transmit water—the transmissivity—changes, as it is the product
of the conductivity, K, and the saturated thickness, b (assuming that b is measured from
the horizontal base of the aquifer).

The general flow equation for two-dimensional unconfined flow is known as the
Boussinesq equation (Boussinesq 1904):
- St

& (’r dh] . i (4 |?-|I) 5 w@.d6)
ax iy dy K it
where 5, is specific yield. This equation is a type of differential equation that cannot be solved
using caloulus ept in some very specific cases, In mathes d s nonlinear.

If the drawdown in the aquifer is very small compared with the saturated thickness,
the variable thickness, b, can be replaced with an average thickness, b, that is assumed to
be constant over the aquifer. The Boussinesq equation can thus be
pruximat‘.un to the form

ized by this ap-

:,' = ;] "]i: (447
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Anisotropic Media

SR

1. Consiruct a hydraulic-conductivity ellpse

\

-
S\

P 4. Draw a tangent o the ellipse atthe point where grad h intesects the

- ellipse

2. Draw the equipotentil line as it is orfrted with respect o the hydraulic-
conductiviy axes and passing through the origin of the ellipse.

]
SN\

5. Draw a flow line o that it passes through the origin of the ellipse and is

perpendicular 10 the tangent.

Anisotropic Media

A FIGURE 4.10
elationship of flow lines to equipatential fiekd and grad h. A lsotropic aqui

. Anisatropic aquifer.




Flow Net Construction

Po-flow beusdary

[t it flow ling
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S| Step 1eSieich the flow system
3 Bl andidensty profived fow
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Lowermant flow line

Mo-flow boundaey
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Equipotential lines
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Equipotential lires

Flow Net Construction

Step 3-Dvaw trial set o flow
lines.

Rules for Flow Nets

Identify the boundary conditions.

Sketch the boundaries to scale with the two axes of the drawing having the same
scale.

Identify the position of known equipotential and flow-line condithons.

al set of flow lines. The outer flow lines will be parallel to no-flow

s. Flow nets do not need a finite boundary on all sides; it is possible to
have a region of flow that extends beyond the outer edge of the flow net. A flow net
can have a partial streamtube along one edge. The flow lines do not need to be
spaced an equal distance apart,

Diraw a trial set of equipotential lines. Start at one end of the flow field and work
toward the other. The equipotential lines should mdicular bo fow lines,
They will be paralle] to constant-head bounda ight angles to no-flaw
o s, If there is o water-table boundary, the position of the equipotential line
at the water table is based on the elevation of the water table. The equipotential
lines should be spaced so that they form four-sided shapes that have approximately
equal central dimensions; that is, lines passing through the center of each shape
should be of approximately the same length.

Erase and redraw the trial flow lines and equipotential lines until the desired flow
net of orthogonal equipotential lines and flow lines is obtained.
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Flow Net

FIGURE 4.12 Flow net in an aquifer beneath an impervious dam.

Flow Net and g’

In addition to presenting a graphic di;i'\ln)' of the gll\uwd-watcr flow directions and
potential distribution, the completed flow net can be used to determine the quantity of
water flowing by the following formula:

. Kph
T

{449

where
" is the total volume discharge per unit width of aquifer (L*/T: ft*/d or m®/d)

=

K is the hydraulic conductivity (L/T; ft/d or m/d)
is the number of flowtubes bounded by adjacent pairs of flow lines

>

is the total head loss over the length of the flow lines (L; ft or m)

-

is the number of squares bounded by any two adjacent flow lines and covering
the entire length of flow,

Equation 449 can be used for simple flow systems with one rec soundary and
one discharge boundary. For complex systems, it is possible to find the discharge for each
streamtube where ¢ = (Kk)/f. The total flow can be found by summing the flow in indi-
vidual streamtubes,

Flow Net and g’

If hydraulic conductivity is 23 ft/day, what is the discharge per unit width of the flow system in
Figure 4.11?

‘The number of streamtubes is 4; therefore, p = 4. The number of equipotential drops is 8; there-
fore, f = 8. The total head loss is 40 ft — 24 ft = 16 ft. Substituting these values into Equation 4.49

. Kph
f
3 X 4 X
- B '; 268 5 1 fr unit width
= 180 f*/d
| | |
S S N -
| | I | |
} Siep 4-Draw ir
- equipateniial
[ ] crthogonl to flow lines.




Streamtube

4 FIGURE 4.13
Streamtube crossing a hydraulic
conductivity boundasy,
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Refraction of Flowline

\w K.

Kz Kz

A B C
A FIGURE 4.14
A. Refraction of a flowline crossing a conductivity boundary. B. Refracted flowline going from a region
of low to high conductivity. €. Refracted flowline going from a region of high to low conductivity.




Refraction of Flowline

> FIGURE 4.15

Aflow net with flow crossing a conductivity
boundary showing refraction of flowlines and
equipotential lines. The hydraulic conductivity
above the boundary is less than that below the
boundary.




