Table 3.1 English and SI Units				
Parameter	English Unit	SI Unit	Conversion Factor	Dimensional Formula
Force	pound (lb)	newton (N)	1 lb = 4.448 N	ML/T ²
Mass	slug	kilogram (kg)	1 slug = 14.594 kg	M
Length	foot (ft)	meter (m)	1 ft = 0.3048 m	L
Time	second (s)	second	1 s = 1 s	Т
Density	slug/ft3	kg/m ³	1 slug/ft ³ = 515.4 kg/m ³	M/L^3
Specific weight	lb/ft ³	N/m ³	1 lb/ft ³ = 157.1 N/m ³	M/L^2T^2
Pressure	lb/ft ²	N/m ²	$1 \text{ lb/ft}^2 = 47.88 \text{ N/m}^2$	M/LT^2
Dynamic viscosity	lb-s/ft ²	N·s/m ²	$1 \text{ lb-s/ft}^2 = 47.88 \text{ N-s/m}^2$	M/LT
Bulk modulus	lb/ft ²	N/m ²	$1 \text{ lb/ft}^2 = 47.88 \text{ N/m}^2$	M/TT^2

Table 3.2	2 Engineering Grain-Size	Classification
Name	Size range (mm)	Example
	> 995	
Boulder	~303	Basketball
Boulder Cobbles	>305	Basketball Grapefruit
Boulder Cobbles Coarse gravel	>305 76-305 19-76	Basketball Grapefruit Lemon
Boulder Cobbles Coarse gravel Fine gravel	>305 76-305 19-76 4.75-19	Basketball Grapefruit Lemon Pea
Boulder Cobbles Coarse gravel Fine gravel Coarse sand	>303 76-305 19-76 4.75-19 2-4.75	Basketball Grapefruit Lemon Pea Water softener sal
Boulder Cobbles Coarse gravel Fine gravel Coarse sand Medium sand	>305 76-305 19-76 4.75-19 2-4.75 0.42-2	Basketball Grapefruit Lemon Pea Water softener sal Table salt
Boulder Cobbles Coarse gravel Fine gravel Coarse sand Medium sand Fine sand	>305 76-305 19-76 4.75-19 2-4.75 0.42-2 0.075-0.42	Basketball Grapefruit Lemon Pea Water softener sal Table salt Powdered sugar

Table 3.4 Porosity Range	s for Sediments
Well-sorted sand or gravel	25-50%
Sand and gravel, mixed	20-35%
Glacial till	10-20%
Clav	33-60%

3.3 Specific Yield

3.3 Specific yield (5_w) is the ratio of the volume of water that drains from a saturated rock owing to the attraction of gravity to the total volume of the rock (Meinzer 1923b) (Figure 3.8). Water molecules cling to surfaces because of surface tension of the water (Figure 3.9). If gravity exerts a stress on a film of water surrounding a mineral grain, some of the film will pull away and drip downward. The remaining film will be thinner, with a greater surface tension so that, eventually, the stress of gravity will be exactly balanced by the surface tension. Pendular water is the moisture clinging to the soil particles because of surface tension. At the moisture content of the specific yield, gravity drainage will cease.

► FIGURE 3.8 A A volume of rock saturated with water. B. After gravity drainage, 1 unit volume of the rock has been dewatered with a corresponding lowering of the level of saturation. Specific yield is the ratio of the volume of water that drained from the rock, owing to gravity, to the total rock volume.

Table 3.5 Specific Yields in Percent			
Material	Maximum	Specific Yield Minimum	Average
Clay	5	0	2
Sandy clay	12	3	7
Silt	19	3	18
Fine sand	28	10	21
Medium sand	32	15	26
Coarse sand	35	20	27
Gravelly sand	35	20	25
Fine gravel	35	21	25
Medium gravel	26	13	23
Coarse gravel	26	12	22

Hydr deper	aulic Conductivity (K) – nds on medium and fluid
Hubbert (1956) poi properties of both the p vious that a viscous flu than water, which is th tional to the specific w gravity on a unit voluu- charge is also inversely measure of the resistant ff experiments are also proportional to the These proportional	nted out that Darcy's proportionality constant, K_i is a function of orous medium and the fluid passing through it. It is intuitively ob- id (one that is thick), such as crude oil, will move at a slower rate inner and has a lower viscosity. The discharge is directly propor- eight, γ_i of the fluid. The specific weight is the force exerted by ne of the fluid. This represents the diriving force of the fluid. Dis- proportional to the <i>dynamic viscosity</i> of the fluid, μ_i , which is a e of the fluid to the shearing that is necessary for fluid flow. erformed with glass spheres of uniform diameter, the discharge is square of the diameter of the glass beads, d . by relationships can be expressed as
	$Q \propto d^2$
	$Q \propto \gamma$
	$Q \propto \frac{1}{\mu}$

Intrinsic Permeability (K _i o medium only	r k) –
Darcy's law can also be expressed as	
$Q = -\frac{Cd^2\gamma A}{\mu}\frac{dh}{dl}$	(3.16)
The new proportionality constant, C_i is called the <i>shape factor</i> . Both C ties of the porous media, whereas γ and μ are properties of the fluid. We constant, K_{ν} , which is representative of the properties of the porous r termed the intrinsic permeability. This is basically a function of the sthrough which the fluid moves. The larger the square of the mean pore di the flow resistance. The cross-exticonal area of a pore is also a function of opening. A constant can be used to describe the overall effect of the shap Using this dimensionless constant, C , the intrinsic permeability is given by the dimensional set of the shap using the dimensionless constant, C , the intrinsic permeability is given by the dimensionless constant C .	C and d^2 are proper- can introduce a new nedium alone. It is ize of the openings iameter, d , the lower of the shape of the e of the pore spaces. by the expression
$K_i = Cd^2$	(3.17)

$\begin{array}{c} \text{Units for } K_{c} \text{ and } b \text{ in square feet, square meters, or square centimeters. In the petrole$ um industry, the*darcy*is used as a unit of intrinsic permeability. (The petroleum engineeris similarly concerned with the occurrence and movement of fluids through porous $media.) The darcy is defined as <math display="block">\begin{array}{c} \frac{1 \text{ cP} \times 1 \text{ cm}^{3}/\text{s}}{1 \text{ darcy}} = \frac{1 \text{ cP}^{2} \times 1 \text{ cm}^{3}/\text{s}}{1 \text{ darcy}} \\ 1 \text{ darcy} = \frac{1 \text{ cm}^{2}}{1 \text{ tm}/1 \text{ cm}} \end{array}$ where $\begin{array}{c} \text{ eP is centipoise (a unit of viscosity)}\\ \text{ atm is atmosphere (a unit of viscosity)}\\ \text{ atm is atmosphere (a unit of viscosity)}\\ \text{ atm} = 1 \text{ of } 2 \times 10^{6} \text{ dyn/cm}^{2} \\ \text{ other that the of definition of the darcy is true to seen that} \end{array}$

Substituting into the definition of the darcy, it may be seen that $1~darcy=9.87\times10^{-9}~cm^2\approx10^{-8}~cm^2$

of magnitude		
Table 3.7 Ranges of Intrinsic Permeabilities and Hydraulic Conductivities for Unconsolidated Sediments		
Material	Intrinsic Permeability (darcys)	Hydraulic Conductivity (cm/s)
Clay	$10^{-6} - 10^{-3}$	$10^{-9} - 10^{-6}$
Silt, sandy silts, clayey sands, till Silty sands, fine sands	$\begin{array}{c} 10^{-3} - 10^{-1} \\ 10^{-2} - 1 \end{array}$	$10^{-6} - 10^{-4}$ $10^{-5} - 10^{-3}$
Well-sorted sands, glacial outwash Well-sorted gravel	$1 - 10^2$ $10 - 10^3$	$10^{-3} - 10^{-1}$ $10^{-2} - 1$

Be	Sure	0	f the Units!
Table 3.6	Conversion	Val	ues for Hydraulic Conductivity
	1 gal/day/ft ² 1 gal/day/ft ² 1 gal/day/ft ² 1 ft/day 1 ft/day 1 ft/day 1 ft/day 1 cm/s 1 cm/s 1 cm/s 1 cm/s 1 m/day 1 m/day		0.0408 m/day 0.134 ft/day 4.72 × 10 ⁻⁵ cm/s 0.305 m/day 7.48 gal/day/ft ² 3.53 × 10 ⁻⁵ cm/s 864 m/day 2835 ft/day 21,200 gal/day/ft ² 24.5 gal/day/ft ² 3.28 ft/day 0.00116 cm/s

Size, Sorting and K

- 1. As the median grain size increases, so does permeability, due to larger pore
- As the median grain size increases, so does permeability, due to larger pore openings.
 Permeability will decrease for a given median diameter as the standard deviation of particle size increases. The increase in standard deviation indicates a more poorly sorted sample, so that the finer material can fill the voids between larger fragments. (Figure 3.2B)
 Coarser samples show a greater decrease in permeability with an increase in standard deviation than do fine samples.
- Unimodal (one dominant size) samples have a greater permeability than bimodal (two dominant sizes) samples. This is again a result of poorer sorting of the sedi-ment sizes, as the bimodal distribution indicates.

Mean 0.14 mm	Range	Man	
0.14 mm		1930 and	Range
o 0.31 mm 2.29	0.08-0.20 mm 0.19-0.45 mm 1.50-3.89	0.16 mm 2.04 mm 11.01	0.09-0.26 mm 0.35-6.70 mm 3.89-33.50
CONT.	Geometric Mean		
	(cm/s)	Ran	ge (cm/s)
	Upper Aquifer	10 10	2 4 4 4 10 - 3
	1.9 × 10 **	4.0 × 10	

Geometri		ean Example
ROBLEM		
Find the geometric mean of the	following set o	of hydraulic conductivity values and compare it
with the arithmetic mean:	In (k)	
Hydraune conductivity (k)	211 (K)	_
$2.17 \times 10^{-2} \text{ cm/s}$	-3.83	
2.58×10^{-2} cm/s	-3.66	
2.55×10^{-3} cm/s	-5.97	
$1.67 \times 10^{-1} \text{ cm/s}$	-1.79	
$9.50 \times 10^{-4} \text{ cm/s}$	-6.96	
Sum: 2.18 × 10 ⁻¹ cm/s	-22.21	
Geometric mean: mea	n ln(K):	-22.21/5 = -4.44
exp [mean	$\ln(K)$:	$e^{-4.44} = 1.18 \times 10^{-2} \text{ cm/s}$
A nith motion		× 10-1)/E = 4.26 × 10-2 == /a
Arithmetic	: mean: (2.18	$\times 10^{-1}$ /5 = 4.36 $\times 10^{-2}$ cm/s

s une sumple enumbe	must equal the volume draining from it (i.e., $a_{in} = a_{mn}$).
(3.26	$-A_t \frac{dh}{dt} = \frac{KA_s h}{L}$
	Equation 3.26 can be rearranged to yield:
(3.27	$\frac{dh}{h} = -K\frac{A_c}{A_c}\frac{l}{L}dt$
t = 0. If we integrate t side from 0 to t, we	The boundry conditions on this problem are that $h = h_0$ at $t = dh/h$ on the left side of Equation 3.27 from h_σ to h and dt the right s can obtain:
	$\ln h - \ln h_o = -K \frac{A_c}{A_t} \frac{1}{L} t$
(3.28	
(3.28 uctivity, K, on the lef areas are proportiona mble chamber, d _c . Th	Equation 3.28 can be rearranged to isolate the hydraulic conduc side and to eleminate the minus signs. In addition the cross-sectional ar to the square of the diameters of the falling head tube, d _u and the saml resulting simplified equation is:

Groundwater Flow and the Water **Table: Observations**

- In the absence of ground-water flow, the water table will be flat.
 A sloping water table indicates the ground water is flowing.
 Ground-water discharge zones are in topographical low spots.
 The water table has the same general shape as the surface topography.
 Ground water generally flows away from topographical high spots and toward topographic lows.

Decline in Head (Pressure) without draining the pores ◀ FIGURE 3.25 Diagram showing lowering of the potentiometric surface in a confined aquifer with the resultant vaster level still above the aquifer materials. In this circumstance, the aquifer remains saturated. ometric surface 5 Confining layer Aquifer Confining lave ouifer

Specific Storage The specific storage (S₂) is the amount of water per unit volume of a saturated forma-tion that is stored or expelled from storage owing to compressibility of the mineral skele-ton and the pore water per unit change in head. This is also called the *dastic storage applied* to both aquifers and confining units. The specific storage is given by the following expression (Jacob 1940, 1950; Cooper 1966). $S_s = \rho_w g(\alpha + n\beta)$ ρ_w is the density of the water (M/L^3; slug/ft^3 or kg/m^3) g is the acceleration of gravity (L/T²; ft/s² or m/s²)

(3.32)

(3.33)

(3.34)

- α is the compressibility of the aquifer skeleton [1/(M/LT²); 1/(lb/ft²) or 1/(N/m²)] n is the porosity (L^3/L^3)
- β is the compressibility of the water* (1/(M/LT²); 1/(Ib/ft²) or 1/(N/m²))

where

p is the compressionly of the watter (1/ (M_2L^-) ; 1/ (M_2/T^-)) of 1/ $((N_1/T^-))$ Specific storage has dimensions of 1/L. The value of specific storage is very small, gener-ally 0.0001 ft⁻¹ or less. In a confined aquifer, the head may decline—yet the potentiometric surface remains above the unit (Figure 3.25). Although water is released from storage, the aquifer remains sturated. The storativity (5) of a confined aquifer is the product of the specific storage (S₃) and the aquifer thickness (b):

 $S = bS_s$

Storativity All the water released is accounted for by the compressibility of the mineral skeleton and the pore water. The water comes from the entire thickness of the aquifer. The value of the storativity of confined aquifers is on the order of 0.005 or less. In an unconfined unit, the level of saturation rises or falls with changes in the amount of water in storage. As the water level falls, water drains from the pore spaces. This storage or re-lease is due to the *specific yield G₂* of the unit. Water is also stored or expelled depending on the specific storage of the unit. For an unconfined unit, the storativity is found by the forma-

 $S = S_y + bS_s$

where b is the saturated thickness of the aquifer. where b is the saturated thickness of the aquiter. The value of S_{φ} is several orders of magnitude greater than bS_{φ} for an unconfined aquifer, and the storativity is usually taken to be equal to the specific yield. For a fine-grained unit, the specific yield may be very small, approaching the same order of magni-tude as bS_{φ} . Storativity of unconfined aquifers ranges from 0.02 to 0.30.

