

Delay Time Method						
	BLE 3-8 Head Wave Arrival Times for an Irregular Refractor					
TARIE 3-8 Ho						
Position						
	Distance (m)		Direct Wave (ms)	Forward Time (ms)	Reverse Time (ms	
Forward source	0	15	0.00		55.20	
Geophone 1	10	14	7.14	21.91	52.14	
Geophone 2	20	13	14.29	23.62	49.09	
Geophone 3	30	12	21.43	25.33	46.03	
Geophone 4	40	13	28.57	28.38	44.33	
Geophone 5	50	13	35.71	30.76	41.94	
Geophone 6	60	14	42.86	33.82	40.24	
Geophone 7	70	15	50.00	36.87	38.53	
Geophone 8	80	16	57.14	39.92	36.82	
Geophone 9	90	17	64.29	42.98	35.11	
Geophone 10	100	19	71.43	46.71	34.08	
Geophone 11	110	20	78.57	49.76	32.37	
Geophone 12	120	21	85.71	52.82	30.67	
Reverse source	130	21	92.86	55.20		
	V1 (m/s)		1400			
	V ₂ (m/s)		4200	Reciprocal time (m	s) 55.20	
	Geophone inte		10		.,	

planar wavefrom arriving at G is located on the refractor at point P. By using the definition of the critical angle and simple geometry, it is straightforward to show that the time for a wave to travel from B to G at V_1 is equal to the time for a wave to travel from B to P at V_2 : $\sin\theta_{\rm B'} = \frac{V_{\rm I}}{V_{\rm I}} = \frac{BG}{BP}$ (3-76) $\mathrm{time}_{BO} = \frac{BG}{V_i} = \frac{BP}{V_i} = \mathrm{time}_{B'}$ (3-77) A simila point II o E, ADE, $t_{E_{FG}} + t_{E_{RH}} = t_R$ (3-79)

