

Multiple Layers: Dix Equation

A second option was derived by C. Hewitt Dix (1955). Dix demonstrated that in a case where there are n horizontal beds, travel-times can be related to actual paths traversed by employing a special velocity value known as the root-mean-square velocity $V_{\rm min}$. In the general case where there are n horizontal beds and Δt_1 is the one-way vertical travel-time through bed l_1 the Dix equation states that

$$V_{\text{rms}}^2 = \sum_{i=1}^{n} V_i^2 \Delta t_i \\ \sum_{i=1}^{n} \Delta t_i$$
(4-8)

For example, if we want to determine the rms velocity to the second in a series of reflecting interfaces, we expand Eq. 4-8 to arrive at

$$V_{rms} = \left(\frac{V_2^2 \Delta t_2 + V_1^2 \Delta t_1}{\Delta t_2 + \Delta t_1}\right)^{1/2}$$
(4-9)

Dix Equation: Velocities

$$t^{2} = \frac{1}{V_{rms}^{2}} x^{2} + t_{0}^{2}$$
 (4-1)

We begin with Eq. 4-8. Given n reflecting horizons, let V_{ms_n} represent the rms velocity to the nth reflector and let $V_{ms_{n-1}}$ represent the rms velocity to the (n-1)st reflector. Then

$$V_{\text{rms}_{n}}^{2} = \frac{\sum_{i=1}^{n} V_{i}^{2} \Delta t_{i}}{\sum_{i=1}^{n} \Delta t_{i}}$$
(4-11)

$$V_{rms_n}^2 \sum_{i=1}^{n} \Delta t_i = \sum_{i=1}^{n} V_i^2 \Delta t_i$$
 (4-12)

Next we expand the summation on the right of the equal sign in Eq. 4-12 and write an equation for $V_{\rm mm_{\rm p,1}}$.

$$V_{\text{rms}_n}^2 \sum_{i=1}^n \Delta t_i = \sum_{i=1}^{n-1} V_i^2 \Delta t_i + V_n^2 \Delta t_n$$
 (4-13)

$$V_{rms_{n-1}}^{2} = \frac{\sum_{i=1}^{n-1} V_{i}^{2} \Delta t_{i}}{\sum_{i=1}^{n-1} \Delta t_{i}}$$
(4-14)

$$V_{mn_{n-1}}^2 \sum_{i=1}^{n-1} \Delta I_i = \sum_{i=1}^{n-1} V_i^2 \Delta I_i$$
 (4-

$$V_a^2 = \frac{V_{rms_a}^2 \sum_{i=1}^{n} \Delta t_i - V_{rms_{n-1}}^2 \sum_{i=1}^{n-1} \Delta t_i}{\Delta t_a}$$
(4-16)

All that is left is to recast Eq. 4-16 into a form that uses quantities directly obtainable from an $x^2 - P$ diagram. Remembering that Δt_i is the one-way vertical travel-time through bed i and that t_i is the two-way vertical travel time from reflector n (at $x^2 = 0$ on an $x^2 - t_i$ diagram), we can write

$$\sum_{i=1}^{n} \Delta t_i = \Delta t_1 + \Delta t_2 + \Delta t_3 \dots$$

$$= \frac{t_{0_1} + \left(t_{0_2} - t_{0_1}\right) + \left(t_{0_3} - t_{0_2}\right) \dots}{2}$$

$$= \frac{t_{0_1}}{2}.$$
(4-17)

and also

$$\Delta t_{n} = \frac{t_{0_{n}} - t_{0_{n-1}}}{2} \qquad (4-18)$$

Therefore, we finally arrive at

$$V_a^2 = \frac{V_{cm_x}^2 \frac{t_{0_x}}{2} - V_{cm_{x-1}}^2 \frac{t_{0_{x-1}}}{2}}{\frac{\left(t_{0_x} - t_{0_{x-1}}\right)}{2}}$$
(4-19)

or

$$V_{\kappa}^{2} = \frac{V_{\text{rms}_{n}}^{2} t_{0_{\kappa}} - V_{\text{rms}_{n-1}}^{2} t_{0_{\kappa,1}}}{t_{0_{\kappa}} - t_{0_{\kappa,1}}}$$
(4-20)

Multiple Layers: Dix Equation

Example

$$V_{3}^{\;2} \;=\; \frac{V_{\rm rms_{3}}^{\;\;2} \, t_{0_{3}} \;\; - \; V_{\rm rms_{2}}^{\;\;2} \; t_{0_{2}}}{t_{0_{3}} \;\; - \; t_{0_{2}}} \label{eq:V3}$$

$$V_{3}^{2} = \frac{\left(2748 \text{ m/s}\right)^{2} \left(0.22561 \text{ s}\right) - \left(2182 \text{ m/s}\right)^{2} \left(0.14667 \text{ s}\right)}{\left(0.22561 \text{ s}\right) - 0.14667 \text{ s}\right)}$$

and

$$V_3 = 3569 \text{ m/s}$$

In many presentations of determining interval velocities the subscripts L for lower and U for upper are substituted for n and n-1. Here lower is synonymous with deeper, and upper is synonymous with shallower. Equation 4-20 then becomes

$$V_L^2 = \frac{V_{rms_L}^2 t_{0_L} - V_{rms_v}^2 t_{0_v}}{t_{0_L} - t_{0_v}}$$
(4-21)

Determine Thickness

Once we have interval velocities in hand, calculating thicknesses is trivial. Because travel time equals path distance divided by velocity, vertical thickness (h_n) is equal to velocity times the one-way vertical travel time, or

$$h_n = V_n \left(\frac{t_{0_n} - t_{0_{n-1}}}{2} \right)$$
 (4-22)

If we use this equation to find the thickness of the third unit in our three-unit sequence of Figure 4-13, we have

$$h_3 = V_3 \left(\frac{t_{0_3} - t_{0_2}}{2} \right)$$

and

$$h_3 = (3569 \text{ m/s}) \left(\frac{0.22561 \text{ s} - 0.14667 \text{ s}}{2} \right) = 141 \text{ m}$$

More Dix Method

TABLE 4-4 Reflection Time-Distance Values for Refracted Ray Paths in a Multilayered Sequence

Increment (m)	0.40	Velocity I (n Thickness I (Velocity 2 Thickness			ity 3 (m/s) ness 3 (m)	3500 10
Theta 1 (*)	X1R (m)	T1R (ms)	Theta 2 (°)	X2R (m)	T2R (ms)	Theta 3 (°)	X3R (m)	T3R (ms
0.50	0.17	50.00	2.25	3.32	94.48	4.38	4.85	100.21
0.90	0.31	50.01	4.05	5.98	94.56	7.90	8.76	100.33
1.30	0.45	50.01	5.86	8.66	94.69	11.45	12.71	100.52
1.70	0.59	50.02	7.67	11.37	94.87	15.04	16.74	100.78
2.10	0.73	50.03	9.49	14.11	95.09	18.70	20.87	101.13
2.50	0.87	50.05	11.32	16.88	95.37	22.43	25.14	101.56
2.90	1.01	50.06	13.16	19.71	95.71	26.27	29.59	102.08
3.30	1.15	50.08	15.01	22.60	96.10	30.24	34.26	102.71
3.70	1.29	50.10	16.88	25.57	96.55	34.37	39.25	103.47
4.10	1.43	50.13	18.76	28.61	97.07	38.72	44.65	104.39
4.50	1.57	50.15	20.67	31.76	97.66	43.34	50.63	105.51
4.90	1.71	50.18	22.60	35.02	98.32	48.35	57.51	106.92
5.30	1.85	50.21	24.56	38.41	99.08	53.91	65.85	108.78
5.70	2.00	50.25	26.54	41.96	99.93	60.33	77.06	111.47
6.10	2.14	50.28	28.56	45.68	100.89	68.38	96.14	116.39

Errors in Green & Dix Solutions

TABLE 4-5 Comparison of Model Parameters with Green and Dix Solutions for Three Geophone Spreads

Parameters	Model	30 m	Green 60 m	120 m	30 m	Dix 60 m	120 m
Velocity 1 (m/s)	400	400	400	400	400	400	400
Velocity 2 (m/s)	1800	2250	2293	2411	1812	1839	1912
Velocity 3 (m/s)	3500	5254	5585	6529	3542	3736	4234
Thickness 1 (m)	10	10	10	10	10	10	10
Thickness 2 (m)	40	50	51	54	40	41	43
Thickness 3 (m)	10	15	16	19	10	11	12

Dip, Thickness, Velocity

Next we derive an expression for t_0 , which, since x = 0 at t_0 , also is easily produced from Eq. 4-26.

$$t_0 = \frac{2j}{V}$$
(4-32)

If we have good data, we should be able to acquire values for t_0 and $t_{\rm min}$ from a travel-time curve. Realizing this and examining Eqs. 4-31 and 4-32, it follows that

$$\frac{t_{\min}}{t_0} = \frac{2j\cos\beta}{\frac{V}{2j}} \tag{4-33}$$

$$\frac{t_{\min}}{t_0} = \cos \beta \tag{4-3}$$

Dip, Thickness, Velocity

$$\beta = \cos^{-1}\left(\frac{t_{\min}}{t_0}\right) \tag{4-35}$$

Based on this derivation, the sign of β must be determined from the dip direction, which should be clearly indicated on the travel-time curve. Because we now know β and can determine x_{\min} in the same fashion we obtained t_{\min} , Eq 4-29 supplies j.

$$j = \frac{x_{\min}}{2 \sin \beta} \tag{4-36}$$

Finally, we want to determine thickness, h. From Figure 4-19 it follows that

$$h = \frac{j}{1 - \frac{\beta}{2}}$$
(4-37)

At this point we have values for h, j, h, t_{min}, t_0 and x_{min} . Any of several of the preceding equations can be used to determine V. The template in dynamic Table 4-7 labeled t-min/t-0 takes care of the computational tasks once the appropriate values are obtained from the travel-time curve.

Dip, Thickness, Velocity

Because the line we produced in Figure 4-21 appears to bisect time values for equivalent distances from the source, let's investigate the result of taking an average by summing our travel-time Eq. 4-26 for an inclined interface and substituting +x- and -x-values.

$$t^2 + t^2 = \frac{4j^2 + (-x)^2 - 4j(-x)\sin\beta}{V^2} + \frac{4j^2 + (+x)^2 - 4j(+x)\sin\beta}{V^2}$$
 (4·38)

$$2t^2 = \frac{x^2 + 4j^2 + x^2 + 4j^2}{V^2}$$

$$t^2 = \frac{x^2 + 4j^2}{V^2} \tag{4-39}$$

Equation 4-39 is the same as Eq. 4-6, with the exception that j replaces h, which tells us that an average of our time values at equivalent distances from the source can be used to determine velocity and the value of j.

Plot of Table 4.6 Data

Return to NMO

Recall that the definition of NMO is the difference in reflection travel-times from a horizontal reflecting surface due to variations in the source-geophone distance, or

$$T_{\rm NMO} = t_x - t_0$$

$$T_{\text{NMO}} = \frac{\left(x^2 + 4h_i^2\right)^{1/2}}{V_i} - \frac{2h_i}{V_i}$$
(4-5)

Now let's examine our basic travel-time equation once again so that we can express as much as possible in terms of t_0 . For convenience in the development we will represent V_t by V and h_1 by h.

$$t_x = \frac{(x^2 + 4h^2)^{1/2}}{V} \tag{4-1}$$

$$t_x^2 = \frac{x^2}{V^2} + \frac{4h^2}{V^2} = \frac{x^2}{V^2} + t_0^2$$
 (4-40)

$$t_x^2 = \frac{x^2 + V^2 t_0^2}{V^2} = \left(\frac{x^2}{V^2 t_0^2} + 1\right) t_0^2$$
 (4-41)

$$t_x = t_0 \left(1 + \frac{x^2}{V^2 t_0^2} \right)^{1/2} \tag{4-42}$$

Return to NMO

According to the generalized binomial theorem

$$(1+z)^a = 1+az + \frac{a(a-1)}{2\cdot 1}z^2 + \frac{a(a-1)\cdots(a-n+1)}{n!}z^7 + \cdots$$

So, if we set

$$a = \frac{1}{2}$$
 and $z = \left(\frac{x^2}{V^2 t_0^2}\right)^{V}$

Eq. 4-42 can be expressed as

$$t_s = t_0 \left(1 + \frac{x^2}{2V^2t_0^2} - \frac{x^4}{8V^4t_0^4} + \frac{x^6}{16V^6t_0^6} + \cdots\right)$$
 (4-43)

Examining the variables within the parentheses, we see that we can ignore all but the first two terms, if

$$\frac{x}{Vt_0} <<< 1$$

If we do so, then our expression reduces to

$$t_x = t_0 + \frac{x^2}{2t_0V^2} \tag{4-44}$$

Return to NMO

$$T_{NMO} = t_x - t_0$$

$$= \frac{x^2}{2t V^2}$$

$$\frac{x}{Vt}$$
 <<<

is equivalent to saying

$$\frac{x}{2h} <<< 1$$

Thus, for Eq. 4-44 to be a useful appr thickness must be much less than one.

$$T_{\rm NMO} \; = \; \frac{x^2}{2 \, t_0 V^2} \, - \, \frac{x^4}{8 \, t_0^{\; 3} V^4} \, .$$

$$_{\text{OMO}} = \frac{x^*}{2t_0V_{\text{rms}}^2}$$

NMO Approx: 30-240 m

Dip Normal Moveout (DMO)

DMO

$$t_{s} = \frac{\left(4 j^{2} + x^{2} - 4 jx \sin \beta\right)^{1/2}}{V}$$
 (4-27)

$$t_x^2 = \frac{x^2}{V^2} + \frac{4j^2}{V^2} - \frac{4jx \sin \beta}{V^2}$$
 (4-49)

$$t_x^2 = t_0^2 + \frac{x^2}{V^2} - \frac{4jx \sin \beta}{V^2}$$
 (4-50)

$$t_x^2 = t_0^2 \left(1 + \frac{x^2 - 4jx \sin \beta}{4j^2} \right)$$
 (4-51)

and

$$t_x = t_0 \left(1 + \frac{x^2 - 4jx \sin \beta}{4j^2} \right)^{\sqrt{2}}$$
 (4-52)

Expanding Eq. 4-52, we have

$$t_{s} = t_{0} \left[1 + \left(\frac{x^{2} - 4jx \sin \beta}{8j^{2}} \right) - \left(\frac{x^{2} - 4jx \sin \beta}{32j^{2}} \right)^{2} + \cdots \right]$$
 (4-53)

Once again, we take only the first two terms in the expansion, and, remembering that t_0 : 2iN, we arrive at

$$t_x = t_0 + \frac{x^2 - 4jx \sin \beta}{4jV}$$
 (4-54)

DMO

When we developed the x^2 - t^2 average data method we summed reflection travel-time equations for +x and -x cases. However, recalling that we are developing a method to take advantage of the availability of dip move-out which we defined in Eq. 4-48, we see that

$$T_{\text{DMO}} = t_{**} - t_{**} = \left(t_0 + \frac{(+x)^2 - 4j(+x)\sin \beta}{4jV}\right) - \left(t_0 + \frac{(-x)^2 - 4j(-x)\sin \beta}{4jV}\right)$$
(4.55)

$$T_{\rm DMO} = -\frac{2 x \sin \beta}{V} \qquad (4-56)$$

and

$$\beta = \sin^{-1}\left(-\frac{VT_{DMO}}{2x}\right) \qquad (4-57)$$

We determine T_{DMO} for a selected x-value on our travel-time curve and V from an x^2 - t^2 plot. This gives us β from Eq. 4-57 and j, and then h, from one of several equations presented previously.