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Figure 32 Travel-time curve (time-distance graph) illustrating only direct wave arrivals
‘The velocity is 286 m/s as determined from the inverse of the slope.

v o= L )
slope

Head Wave Distance vs. Time

By =
thickness
of layer 1

Figure 3-3 Diagram illustrating symbols used in derivation of time of travel for critically
refracted ray.

The total time of travel must be

time = E‘% + A—(IZE + NT‘G (3-6)




Head Wave — Travel Time Eqn.

‘The total time of travel must be

_EM  MN NG

time = Vl Vl VI
Since
cos6, = 2 and EM = NG
EM
then
Iy
EM = NG =
cos0, =
Also, s
= = htanf, and MN — 2htan6,
time = — M, X~ 2han6,
Vicos8, A V;cos6, (3-8)

Head Wave — Travel Time Eqgn.

2h _ 2hun6, | x
time LU 3.9
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Next, we uilize the relationships
b, = 0 g ging, = A
<os6, A
o change Fq. 3-9 to
. 2h, 2/sin’ 6, x . . "
fime = _2h__ _ 2hsin’6,  x
S Vst | Vicosh, |V,
Consolidating, we obtain I et
.
Gime = 2(l—=sin®6.) | x (3-11)
Vieos6, v,
Using the familiar relationship
sin?0, + cos’6, = 1
and the identities noted previously, we can substitute to obtain
time = 2Mmc0s6, | x (3-12)
Vi v
e
time = 2= OP/VIN" | x (3-13)
d v
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time = 2 (%2 X (3-14)
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Figure 3.4 Generalized diagram illusirating ray paths in @ material with one horizontal

i h

With the final form
same procedure as

.
— 3-14)

A7 v, @
of our travel-time equation (3-14) directly in front of us, let’s follow the
we did for the direct wave and take the first derivative of the equa-

tion with respect to x. This provides a perhaps surprisingly simple result

a .1 (3-15)
&




TABLE 3.1 _Asrival Times for Direct and Rufracted Waves
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Thickness from Intercept Time

Determining Thickness

Examine Figure 3-4 once again. The straight line passing through the arrival times for the
critically refracted ray can be extended until it intersects the time axis. This time is termed
the intercept time t,. Recall that it has no real physical significance, because no refractions
arrive at the energy source (x = 0). However, at x = 0 our travel-time Eq. 3-14 reduces to
2 2312
= 2h, W = v
Al

time = (3-16)

and, therefore,

o= (3-17)

Lo VW
2 - v”
Thus, for a single horizontal interface, if we can determine times for direct and refracted
arrivals from a field seismogram, we can calculate the thickness of the material above the
interface and the velocities of the materials above and below the interface.

Thickness from Crossover Distance

At x,, the times of travel for the direct wave and the refracted wave are
equal, and, thercfore,

time,, = do ¢ 3
L - v (see 3-2)
. 2h (V2
Me ocanme = (see 3-14)
and
v (3-18)
If we rearrange terms, we arrive at
BV - vy
by - VO 319
and
by = e (3-20)

The V,V, terms cancel, and remembering that (V2 = V2) = (V,= V) (V, + V,), we can sim-

plify Eq.3-20 to
vy \"
v+ G2
-17 to determine layer

Itis mainly a matter of convenience whether we use Eq. 3-21 or Eq. 3
thickness. However, because determination of x,, involves fitting nwo lines o field data,
whereas #, requires only one line, t; usually can be determined with more accuracy.




Critical Distance (no head waves)
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Figurc3-5 This diagram iffustratcs the rela-
tionships for calculating critical distance.
Critical distance is the minimum distance
from the cnergy source at which the first criti-
cal refraction can be received.
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Figure 3.5 This diagram illustrates the rela-
tionships for calculsting critical distance.
Criical distance is the minimum distance
from the energy source at which the firs crit-
cal refraction can be received.

Derivation of an equation to calculate critical distance is straightforward (which you
18).

already know if you solved Problem 2-

and, since

tan 6, (322

tan sin”![ %
v,

] :
conefu(g] — AT

} 4 (3-23)

Picking Arrivals on a Seismogram

Figure 36 Field seismogram from the Connecticut Valley, Massachusetss. Geophone
traces are labeled 112, The first geophone is located 5 m from the energy source. The geo-
phone interval is 3 m. First breaks for each trace are indicated by a downward directed
arow, Timing lines are at The record encompasses 100 ms. This seismo-
‘gram exhibits a classic two-
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Figure 37 (3) Time-distance data from the scismogram in Figure 3.6, (b) Lincs drawn

through data points i (a).
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Figure 3-8 Travel-time curves simplificd
from Mohorovii's original plots. P, is the
direct compressional wave, and P, is the
refracted compressional wave. Terminology
for shear waves S is similar. The section
below the travel-time curve  illustrates.
Mohorovi&i€’s interpretation of the travel-
time curves.

Multiple Horizontal Layers

and, since 6, =

We know from Eq. 2-25 (Snell’s law) that

6, then

h
thickness
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h
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Figore 39 Diagram illustrating symbols used in derivation of time of travel for ray criti-
cally refracted along the second interface in a three-layer case.




2nd Interface Head Wave x-t eqn.

and, finally

2 yayn 2 _yaygn
fme = 4 2WOR = WOV 20 (W - V) o)
V. I3 ViV,

Once again we finish with an equation for a straight line. As you probably have
observed by now, if we once again take a derivative—voilal

(3-34)
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Figure 310 Generalized diagram illustrting ray paths in a material with two horizontal
interfaces. Time-distance relationships for the direct and two eritically refracted rays are
shown in the travel-time curve,

2 Interface x-t Plot — computed
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Figure 312 Travelime curve based an a RefractModel plot using velocity values in
Table 3-4 with k, = § m and k, = 20 m. Note that the first refraction from the second

Face t be a firstsevival s Bocated 4 & distance considerably greater than the sccond
distance.




Field Seismogram

Figure 313 Field seismogram from the Connecticut Valley, Massachusetts. Geophone
traces are labeled 1-12. The first geophone is located 3 m from the cnergy source. The geo-
phone interval is 10 m, First breaks for each trace are indicated by a downward directed
arrow. Timing lines are at 5-ms intervals. The record encompasses 100 ms

2 Horizontal Interface x-t Plot —
from seismogram (note: just 1
direct wave first arrival)
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Figure 3-14  Preferred isterpretation of time-distance data taken from Figure 313,
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Figure 3-16 Correlation of a travel-time curve with wave paths to geophones at cqual




Dipping Interface: Velocity not equal to 1/slope
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Figure 3-16 Corrlation of a travel-time curve with wave paths o geophones at equal
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Figure 317 Correlation of a travel-time curve with geophone positions above a single

dipping interface. The purpose of this diagram s 10 demonstrate the different path dis-

tances and arrival times for geophones located at identical offsets for a forward and reverse

traverse.




Intercept Time gives up-dip direction

Shope = LY,

Figure 313 Ireportan festures of & travel-Sme curve for a single dipping besfice. Nete
prwased and pevense shot

arascd bry he s
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x-t equation for dipping interface
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Figure 3-19 Diagram illustrating symbols used in derivation of travel-time equation for a
single dipping interfce.

x-t equation for dipping interface

Dipping Interfacos

87
In examining

Figure 3-19, recall that &, is measured from the perpendicular 1o the
interface, First, we tackle the case when the energy source is located in the down-dip posi-
tion (we are “shooting” wp-dip).

time, = {3400
EM = —ii_ NG = -
cos i, cos fh,
and since Jo = ds - EP = j, — xsinff,
NG = oz asinp
: cosh,
Since MN = PG — AM - NC, we determine the relevant quantities
PG = xcosf,

AM = j,tanfl,, and NC =

o and, = (j; = xsinf ) ang,
This gives us the basic travel-time equation

time, = o :‘ i xeosfi = J, tand, ‘
' cosf,

(Ju = xsinfl) ané,  j, - ssing o )
¥, cosfl,




x-t equation for dipping interface

We can reduce this equation to a simpler form by using the trigonomelric identities we used
in our previous derivations and by remembering

sin(8, - f) = sind, cosff — cosd, sinf
sin(@, + f) = sind, cosfi + cosdl, sinff

Finally, we arive at

time, = 2098 | ;‘ sin(8, - ) (3-42)

«
L]
Our mext step is 10 move the energy source 10 the up-dip part of the interface to shoat down-
dip. The cquation we arrive at looks remarkably similar 10 Eqg. 3-41_ After simplifying once
agsin, we have

fime, = —:‘.'ﬂx + L sin(e, + ) (3-43)

These two equations are not caly very similar 1o cach other it are not as different from the

horizostal single-imerface case as you might have predicted. Our next step, by now almest

a ritaal, i to determine the slopes of the straight lines that these equations define. Taking

the derivatives of Eq. 3-42 and 3-43 resulis in

sl - B) oy dltime.)
¥ dr

Critical Angle and Dip of Interface
from m, and my

Following the terminology established in Figure 3-18 for slopes and intercept times, we
begin by rewriting Eq. 3-44 in the form
(0. =0) 4y, o 520 20) s

Remembering that sin 6, = V,/V,, we see that we can determine V, if we know 6. Of
course, we also want to know the dip 3 of the interfice. Noting the + and - signs in Eq. 3-
45, we sce that we can solve these slope equations for both /3 and 6. Therefore, we put
these equations in the form

6, - B =sin"(Vm,) and 0, +f = sin”(Vm,) (3-46)
Because m,, m, and V, are determined directly from the travel-time curve, we solve for 6

0, =sin" (V) + B and 6, = sin” (Vm,) = B

20, = sin” (Vim,) + sin” (Vim,)
and, finally,

n” (%m,) (347

determine the relationship for B using

B =6, -sin'(Vm,) and B =

Similarly,

e + sin”! (Vim, )

o arive at
2B = sin” (Vim,) - sin”" (Vim,)
M‘/n

= sin” (Vimg) (3-48)

B

Thickness from Intercept Time

Determining Thickness

However, we are not yet quite finished. We still need to derive an equation that provides a
solution for thickness, at both the up-dip and down-dip portions of the interface. At this
point we know the critical angle and the velocity of the first layer, so we can express Eqs.
3-42 and 3-43 in terms of intercept times:

= 2jycosB (349

and

(3-50)

v
Noting from Figure 3-19 that cos = jfh,, and cos fi=
single dipping interface

th,, we complete ous task for the

4
(50
be
a, (3-53)
and
i, (3-54)
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