

Distance from Shot (m)	Arrival Times (ms)			
	Direct Wave	Refracted Wave		
0	0.00	13.58		
3	2.14	14.24		
6	4.29	14.91		
9	6.43	15.58		
12	8.57	16.24		
15	10.71	16.91	Velocity 1-P (m/s) Velocity 2-P (m/s) Depth (m)	1400
18	12.86	17.58		4500
21	15.00	18.24		10
24	17.14	18.91		_
27	19.29	19.58		
30	21.43	20.24	Shot effset (m) Geophone interval (m) No refracted wave intervals before (ms)	
33	23.57	20.91		3
36	25.71	21.58		
39	27.86	22.24		
42	30.00	22.91		6.55
45	32.14	23.58		
48	34.29	24.24		
51	36.43	24.91		
54	38.57	25.58		
57	40.71	26.24		
60	42.86	26.91		
63	45.00	27.58		
66	47.14	28.24		
69	49.29	28.91		

2nd Interface Head Wave x-t eqn. and, finally time = $\frac{x}{V_3} + \frac{2h_1(V_3^2 - V_1^2)^{V_2}}{V_3V_1} + \frac{2h_2(V_3^2 - V_2^2)^{V_2}}{V_3V_2}$ (3-33) r_{3} , r_{3} , r_{3} Once again we finish with an equation for a straight line. As you probably have observed by now, if we once again take a derivative—voilal $\frac{dt}{dx} = \frac{1}{V_3}$ (3-34) $\hat{h}_2 = \left[t_{t_1} - \frac{2h_1(V_3^2 - V_1^2)^{1/2}}{V_3 V_1} \right] \frac{V_3 V_2}{2(V_3^2 - V_2^2)^{1/2}}$ (3-35)

Thickness from Intercept Time						
Determining Thickness						
However, we are not yet que solution for thickness, at be point we know the critical 3-42 and 3-43 in terms of ir	uite finished. We still need to derive an a soft the up-dip and down-dip portions of angle and the velocity of the first layer, ntercept times:	equation that provides a of the interface. At this so we can express Eqs.				
	$t_{bl} = \frac{2 j_d \cos \theta_{lc}}{V_l}$	(3-49)				
and						
	$t_{in} = \frac{2 j_s \cos \theta_{ic}}{V}$	(3-50)				
Noting from Figure 3-19 th single dipping interface	hat $\cos \beta = j_d / h_d$, and $\cos \beta = j_u / h_u$, we contain the set of the set	omplete our task for the				
	$j_d = \frac{t_d V_1}{2 \cos \theta_w}$	(3-51)				
	$j_{\mu} = \frac{t_{\mu}V_1}{2\cos\theta_{\mu}}$	(3-52)				
	$h_d = \frac{j_d}{\cos\beta}$	(3-53)				
and	$h_s = \frac{j_s}{\cos\beta}$	(3-54)				

