Volcanoes: Big Ideas

- Humans cannot eliminate natural hazards, such as volcanic eruptions, but can engage in activities that reduce their impacts by identifying high-risk locations, improving construction methods, and developing warning systems ٠
- Water's unique physical and chemical properties are essential to the dynamics of all of Earth's systems •
- Understanding geologic processes active in the modern world is crucial to interpreting Earth's past •
- Over Earth's vast history, both gradual and <u>catastrophic</u> processes have produced enormous changes •
- Earth scientists do reproducible experiments and collect multiple lines of evidence. •

the surface to form a

- the magma chamber through central and
- lithosphere to form a

Types of Lavas

- **Basaltic lavas**: low-viscosity mafic lavas, typically erupted at 1000° to 1200° C; cool to form basalt.
- **Rhyolitic lavas**: high-viscosity felsic lavas, typically erupted at 800° to 1200° C; cool to form rhyolite.
- Andesitic lavas: intermediate in composition and viscosity between mafic and felsic magmas; cool to form andesite.

Pyroclastic Material:

Fragmentary volcanic rocks ejected into the air

Fig. 12.7

Shield Volcanoes

- Formed mainly of basaltic lavas
- Gentle sides: ~2-10 degrees
- Can be huge: up to 120 km wide!
- Long duration of activity:10,000's yrs
- Eruptions usually non-violent

Volcanic Domes

- Form of viscous felsic lavas
- Steep-sided and small:~100's m wide
- Grow slowly

Cerro Negro Cinder Cone, near Managua, Nicaragua in 1968

Fig. 12.11c

Cinder Cones

- Formed mainly of basaltic pyroclastic material
- Steep sides: ~30 degrees
- Relatively small: ~ 1 km wide
- Short-lived: typically a single event

Composite Volcano

- Mainly alternating pyroclastic deposits and andesitic lava flows
- Slopes are intermediate in steepness
- Relatively large: ~10-15 km wide
- Intermittent eruptions over long time span: 1,000's of yrs
- Eruptions often highly explosive

Caldera

- A large depression (typically several km wide) formed by collapse of a volcano into a partially drained magma chamber
- May have younger domes within it

STAGE 1

Fresh magma fills a magma chamber and triggers a volcanic eruption of lava and columns of incandescent ash.

STAGE 2

Eruption of lava and pyroclastic flows continue, and the magma chamber becomes partly depleted. Fig. 12.12

nd

Fig. 12.12

STAGE 3 A caldera results when the mountain summit collapses into the empty chamber. Large pyroclastic flows accompany the collapse, blanketing the caldera and a surrounding area of hundreds of square kilometers.

STAGE 4

A lake forms in the caldera. As the residual magma in the chamber cools, minor eruptive activity continues in the form of hot springs and gas emissions. A small volcanic cone forms in the caldera.

Volcanoes along the Laki Fissure (Iceland) formed in 1783, resulting in the largest lava flow in recorded history

Fig. 12.15

Types of Volcanic Hazards

- Lava Flows:
- –e.g. Hawaii, 1998
- <u>Gas</u>:
 - e.g. Lake Nyos (Cameroon), 1984 -1700 people killed
- Ash fall:
 - -e.g. Mt Pinatubo, 1991

Types of Volcanic Hazards

Pyroclastic flows:

- -e.g. Mt Pelee, 1902 28,000 killed
- Lahars (mudflows):
 - -e.g. Nevado del Ruiz, 1985 23,000 killed

• <u>Tsunami</u>:

-e.g. Krakatoa, 1883 - 36,417 killed

Pyroclastic Flows:

A density flow consisting of a hot (up to 800° C), poisonous mixture of gas and pyroclastic material moving downslope at speed in excess of 200 km/hr!

Fig. 12.10

Lahars (Volcanic mudflows)

- Formed by the sudden mixing of large volumes of pyroclastic material with water (e.g. heavy rain, draining of crater lake, melting of glacier)
- Lahars can move 100+ km/hr, and can cover large areas (1,000's of km²), and can kill large numbers of people (~25,000 in one event)

Volcano Videos

- ٠ http://www.metacafe.com/watch/119241/big in japan/
- http://www.metacafe.com/watch/738148/volcanic_eruptio n/
- It::://www.metacafe.com/watch/yt-8fpvgLTJhg/underwater_volcanic_eruption/
 http://www.metacafe.com/watch/yt-BbTFkPxwhTM/eruption_of_etna_volcano_december_2 006/