
COLUMNS

46 / MAY 2014 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

Hulk Bash!
Not a programmer? No worries, Bash scripting
doesn’t have to be rocket science.

I’m not a programmer. Anyone
who has read my “code” through
the years in my columns would
agree. That doesn’t mean I don’t
have a constant need to depend on
scripts to help automate my job.
Let’s face it, system administrators
don’t have enough arms on their
bodies or minutes in a day to
accomplish all the various things
that need to be done. Any sysadmins
worth their salt know enough about
scripting to make sure they don’t do
the same task over and over. If you
need to do something more than
once, you should be using a script.
So in this article, I want to give a
quick primer, along with a little bit
of insight regarding Bash scripting
for Linux.

I’m going to assume you’re like
me and don’t have a programming
background. If you’re a programmer,
you’re probably writing your own
programs. My paltry scripting
abilities won’t do you much good,
and you’ll probably e-mail me about
how inefficient I’m being. (Many will

anyway, and that’s fine, but be sure
to read the next section.)

What Hack-Job Scripting Isn’t
There’s a place for efficient, well
planned programming. There’s even
a place for well thought-out scripting
(Dave Taylor, for example, will give
you far more insight on the proper
way to script). If you’re in the server
room as a system administrator,
however, sometimes you just need to
write a five-line script to automate
a task that would take you an hour
on your own. If it takes you six hours
to write a “proper” script that is
designed to save you five hours...
well, you fail 6th-grade math.

very important aspect of any
programming. Again, however, if
you’re just making a script to create
a JSON configuration fi le, thinking
too much about potential errors
is just si l ly. Look at the config fi le
when you’re done, and if it’s wrong,
fix the script. In my early years as a
system administrator, I was afraid to

SHAWN POWERS

LJ241-May2014.indd 46 4/21/14 10:06 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / MAY 2014 / 47

use a scripting language, because
I wasn’t a “programmer”, and I
figured I’d do something wrong.
I was right, I did do things wrong.
I sti l l do. But so do programmers,
and there’s no better way to learn
than by doing. So let’s look at some
of the basic things a Bash script can
do and then experiment. The worst
you’l l do is mess something up, but
then you get to fix it, which is often
more fun than breaking it in the
first place!

A Few Basic Things I Didn’t Know,
and a Few I Did
When I first started scripting, I did
some really, really dumb things. They
worked, so I don’t regret them at all,
but if I’d known then what I know
now, I might have gotten a little more
sleep in my 20s. Here’s a very partial
list of useful things to know when
using Bash scripts.

The Backtick On the Bash
command line, and therefore in Bash
scripts, when you enclose a command
in backticks, Bash replaces the stuff
inside the backticks with the results.
For example, say you have a text file
“file.txt” that has a single line of text
in it, reading “This is cool.” On the
command line, if you type:

echo "cat file.txt"

The command line will return simply:

cat file.txt

But, if instead you enter:

echo "`cat file.txt`"

This is cool.

What’s happened is that the Bash shell
takes the output of cat file.txt
and uses that in the echo statement,
because it was encased in backticks.
An embarrassing truth is that for a long,
long time that’s the only way I knew
to pass information to a Bash script. If
I wrote a script that needed input, I’d
save the input into a text file, and then
encase cat thatfile.txt in backticks.
It worked, but I really wish I’d learned
earlier about command-line arguments.

Command-Line Arguments If you
need user input, Bash scripts allow for
this by taking input from the command

can reference those variables inside
the script, making things much, much
simpler. Here’s an example snippet:

#!/bin/bash

This is my script, named coolscript

echo "My name is $1, you killed my father, prepare to $2."

COLUMNS

THE OPEN-SOURCE CLASSROOM

LJ241-May2014.indd 47 4/21/14 10:06 AM

http://www.linuxjournal.com

COLUMNS

48 / MAY 2014 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

If you launch the script by typing:

chmod +x coolscript (NOTE: This makes the script executable,

it only needs to be done once)

./coolscript "Inago Montoya" "Die"

The script will take your two
arguments and substitute them in
the script. So the output will be:

My name is Inago Montoya, you killed my father, prepare to die.

of arguments, and the $1, $2,
$3 pattern will follow. If your
arguments are strings, like my
example, note that encasing your
arguments in quotes will allow for
spaces. Without the quotes, the
output of the script would be:

My name is Inago, you killed my father, prepare to Montoya.

the word “die” would be stored in
the $3 variable and just not used in
the script. Command-line arguments

are something I use all the time. It’s
a great way to get information into
the script. If you want an interactive
experience, you can use the read
command, but I usually just use
command-line arguments because it
saves time.

Redirecting Output Because
system administrator scripting is often
a quick hack to solve a problem,
redirecting output to a file is fairly
common. There are ways to write to
a file directly inside Bash, but it’s far
more convenient to have the Bash file
dump its results to the screen, and
once you have the script tweaked,
redirect the output to a file. The
process is simple, but the ability is
ridiculously useful. The following
command (which could be in a script):

echo "This is cool stuff"

will immediately respond by displaying
“This is cool stuff” on your screen.
Generally, you’ll have a more complex
script that will display many things

There are ways to write to a file directly inside
Bash, but it’s far more convenient to have the
Bash file dump its results to the screen, and
once you have the script tweaked, redirect the
output to a file.

LJ241-May2014.indd 48 4/21/14 10:06 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / MAY 2014 / 49

COLUMNS

THE OPEN-SOURCE CLASSROOM

on the screen (like a repetitive JSON
config file or something), but it still
will just print it to the screen. If you
want to save the output to a file, you
either can copy it and paste it (which
I did at first), or you can redirect the
output to a file. To do that, change
the command to:

echo "This is cool stuff" > coolfile.txt

the screen, but you also shouldn’t
get any errors. The cool part is
that you will now have a new fi le
called “coolfi le.txt”, which contains
a single l ine of text. I’m sure you
can guess what text that is! One
disadvantage of the > redirector
is that it writes over whatever fi le
you specify. So if you repeat the
command, you’l l end up with a
brand-new fi le, named exactly
the same thing, with a single
l ine of text. Thankfully, if you
use two greater than signs (>>),
it wil l append to the end of the
fi le as opposed to overwriting it.
So if you type:

echo "This is line one" > oneliner.txt

echo "This is line two" >> oneliner.txt

The file “oneliner.txt” actually
will contain two lines of text. Try

playing around with redirecting text.
What happens if you try to use a
double greater than symbol when a
file doesn’t exist? Will it error out?
Will it create a file? Give it a try and
see if you can figure out the way
redirection works.

Conditionals: Getting Iffy with It
One of the most common uses for a
script is to do some “thing” based
on whether or not some other
“thing” is true. The construct for
accomplishing such a thing is to use

The format works like this:

#!/bin/bash

An example of an IF/THEN statement

if [true]

then

echo "The condition is true!"

echo "I love true conditions..."

else

echo "Uh oh, the condition is false"

fi

A quick walk-through should be
clear. If whatever is inside the square
brackets evaluates as true, the portion
of the script after “then” is executed.
If it evaluates as false, the part after
the “else” is executed. The else
portion of the statement is optional.
If the else portion isn’t there, the if

LJ241-May2014.indd 49 4/21/14 10:06 AM

http://www.linuxjournal.com

COLUMNS

50 / MAY 2014 / WWW.LINUXJOURNAL.COM

statement just doesn’t do anything
if the conditional statement is false.
It’s important to end the entire
statement with “fi”, which tells Bash
that the list of things to do is over.
The difficult part is often figuring out

The “conditional statement” can get
fairly complex, but there are a few
common examples:

if [-e /tmp/filename.txt]

This translates to “if the fi le
/tmp/fi lename.txt exists, then this
is true”, so the if statement would
execute whatever is in the then
part of the script.

if [-d /tmp/thing]

This translates to “if /tmp/thing
exists, and it’s a directory, then this is
true”, so if there is a file at /tmp/thing
rather than a folder, the statement
will evaluate as false. In that case, the
else part of the script will execute, or
if there’s no else part, the script will
just move past the fi statement doing
nothing at all. There are a bunch of
things that can live in the conditional

brackets. If you want to see a huge
list of possibilities, check out
http://www.tldp.org/LDP/Bash-
Beginners-Guide/html/sect_07_01.html.

Usually, the majority of solutions
can be met with creative uses of
if/then/else, especially if you nest
if/then statements inside other
if/then statements. The logic can
become fairly complex. There is the
case command, which is ideal in
some scenarios. Rather than having
two options (true/false, if/then),
case allows for a list of options. case
statements are a little more complex,
but just as logical. If you’d like to
learn more about case, check out the
in-depth guide at http://tldp.org/
LDP/Bash-Beginners-Guide/html/
sect_07_03.html.

Getting Loopy
Just as useful, if not more useful than
a conditional statement in a Bash
script, is the loop. I find two types
of loops particularly useful: the FOR

much like the if/then statement above.

which I’ll dissect next:

THE OPEN-SOURCE CLASSROOM

Just as useful, if not more useful than a
conditional statement in a Bash script, is the loop.

LJ241-May2014.indd 50 4/21/14 10:06 AM

http://www.linuxjournal.com
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_03.html

 WWW.LINUXJOURNAL.COM / MAY 2014 / 51

#!/bin/bash

A simple WHILE loop

COUNT=0

while [$COUNT -ne 10]

do

 echo "The counter is $COUNT"

 let COUNT=COUNT+1

done

There’s a few new concepts here,
but they’re fairly straightforward.
First, you set a variable named
COUNT to zero. Then you set up the
while conditional statement. In this
case, it’s a comparison, comparing
the value of the COUNT variable
to the number 10. The -ne means

conditional statement reads, “While
the variable named COUNT doesn’t
equal 10, repeat the following.”

do and done
will loop over and over until the
conditional statement evaluates as
false. As you can probably guess, it’s
very easy to make an infinite loop

Once the loop begins (with the
do statement), the script echos
“The counter is 0”, then the
variable COUNT is incremented by
1, and the loop starts over because
COUNT is still not equal to 10.

COUNT does equal 10,
so the loop stops and moves past

the done statement. In the script
above, the last thing to print on
the screen will be “The counter is
9”, because after that is printed,
the COUNT variable is incremented
to 10, and the loop doesn’t run
again. What would happen if you
changed the incrementor to let
COUNT=COUNT+3? (Answer: the loop
would never end and would count
by 3 until you got tired and pressed
Ctrl-C to end the script.)

The conditional statement works
just like the if conditional statement,
and the link above will give you lots
of conditional tests to use inside the

like -eq is “equals”, -lt is “less
than” and so on. It’s important to
know that the conditional statement
is evaluated before the loop is run,
so if the statement starts as false,
the stuff between the do and done
never will execute.

The FOR Loop
The last construct I’m going to cover
here is the FOR loop. It’s the hardest
loop to wrap your brain around, but
it’s also one of the most useful. If it
seems too complicated or confusing, I
urge you to keep playing around with
it until it makes sense. Really, FOR
loops are incredibly useful. Here’s a
couple simple FOR loops that do the

COLUMNS

THE OPEN-SOURCE CLASSROOM

LJ241-May2014.indd 51 4/21/14 10:06 AM

http://www.linuxjournal.com

52 / MAY 2014 / WWW.LINUXJOURNAL.COM

COLUMNS

same thing:

#!/bin/bash

Simple FOR loop example

for x in 1 2 3 4 5

do

 echo "Loop number $x"

done

#!/bin/bash

Simple FOR loop example with range

for x in {1..5}

do

 echo "Loop number $x"

done

Basically, the FOR loops above will print:

Loop number 1

Loop number 2

Loop number 3

Loop number 4

Loop number 5

What the loop actually does is take
the “set” of items from the second half

{1..5}) and runs the loop as many times as

it assigns the particular item in the set to
the variable in the first part of the FOR
statement (so the variable $x in this case).
The examples above make it fairly easy to
see what is happening, but it can become
really complicated, so understanding

the basics is key. I’m finishing this
article with another code snippet. See
if you can figure out what it’s going to
do, and I’ll go over the results.

First, say you have three text files in
a folder /tmp/folder/ by themselves:

 file1.txt: contains the text “This is
file 1” on a single line.

 file2.txt: contains “This is file 2” on
a single line.

 file3.txt: contains two lines of text,
“This is line 1” and “This is line 2”.

Next, create the Bash script that will
deal with the files in a FOR loop:

#!/bin/bash

A script that manipulates files with a FOR loop

for x in `ls /tmp/folder/`

do

 echo "I am the file named: $x"

 cat /tmp/folder/$x

 echo " "

done

This returns:

I am the file named: file1.txt

This is file 1

I am the file named: file2.txt

This is file 2

THE OPEN-SOURCE CLASSROOM

LJ241-May2014.indd 52 4/21/14 10:06 AM

http://www.linuxjournal.com

I am the file named: file3.txt

This is line 1

This is line 2

The confusing part of this FOR loop
is that it’s not dealing with a series
of numbers, but rather with a set
of “things”. At the beginning, you
should have noticed the backticks to
use the output of the ls command
to create the set. So, since there were
three items in the folder, the FOR loop

value of the “item” was assigned to
$x. If you follow the logic of the script
along with the output of the results, it
should make sense.

Your Mission: Play!
I think I’ll wrap up there this month.
With the information in this article,
you should be able to create some
fairly complex scripts. See if you can
write scripts and have them give you
the results you expect. Next month,
I want to build on these skills to give
you some real-world use cases for
scripting as a system administrator.

I’m not a programmer. Thankfully, I’m
a fairly logical person, however, and with
scripting, logic is king. There are many
more complex things to do with shell
scripting, but with the basics, you can
do so many amazingly useful things. I’m

excited for you to get comfortable with
scripting—it can be a lifesaver!

Shawn Powers is the Associate Editor for Linux Journal.
He’s also the Gadget Guy for LinuxJournal.com, and he has

an interesting collection of vintage Garfield coffee mugs.

Don’t let his silly hairdo fool you, he’s a pretty ordinary guy

and can be reached via e-mail at shawn@linuxjournal.com.

Or, swing by the #linuxjournal IRC channel on Freenode.net.

THE OPEN-SOURCE CLASSROOM
COLUMNS

 WWW.LINUXJOURNAL.COM / MAY 2014 / 53

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

LINUX JOURNAL
on your

Android device
Download
app now in
the Android
Marketplace

www.linuxjournal.com/android

LJ241-May2014.indd 53 4/21/14 10:06 AM

mailto:shawn@linuxjournal.com
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
http://www.linuxjournal.com
http://Freenode.net
http://www.linuxjournal.com/android

