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TE N S O RS  

 
Tensors are abstract objects describable by arrays of functions.  Each function of such 

an array is also called a component.  Components are functions of the selected co-ordinate 

system (Hadsell, 1995).  As such, the component can change in aspect with the change of 
reference system.  However, the value of the property they serve to represent does not.   

Let’s try to visualize the components of a tensor and their relation to real physical values 
they represent: 

A tensor is called an nth order tensor when it comprises an array of 
nr components, 

where r is the number of the dimension (2D, 3D, etc.)  and n is called the order We will be 

mainly seeing second or third-order tensors in three dimensions, so that our arrays can have 
from 32 to 33 components. Arrays with nine components can be written in the form of a 3x3 

matrix.  Arrays with 81 components are more difficult to visualize but we can use the Voigt 
notation in this case.  In the case of more than two dimensions indicial notation becomes a 

very convenient way to deal with tensors. 

As an example can use the Levi-Civita tensor of order 3, where  i,j and k can equal 1,2,3: 

ijk  
In this example we can think of the i as the row number that contains three, 3x1 vectors. 

 

for i=1,2,3; j=1,2,3; k=3 

We can consider j as the column and k as the layer or depth of the 27-component 

system. 
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for i=1,2,3; j=1,2,3; 

k=1         

for i=1,2,3; j=1,2,3; 

k=2        

for i=1,2,3; j=1,2,3; 

k=3 
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STRESS TENSO R 

A stress tensor is of order 2 and in 3 dimensional space has 9 components. Or, in other 

words, at one point in three-dimensional space we describe the conditions for stress using 
three vectors centered at the same point. 

In order to study and define the stress at a point we can study stress in two ways.  First, 
on three orthogonal planes passing through the point, or alternatively, we can study stress on 

the six sides of an infinitesimally small cube as its volume in the limit, diminishes in size to 
nothing.   

At a finite size, this cube as being acted upon by body forces on all the particles of 
matter it contains.  Body forces act at a distance and could include a gravitational, electrical 

or magnetic field that is acting on the particles in the cube.  If we assume that the body is 
not experiencing any linear acceleration which can contribute to the gradient of the stress 

vector field then we can disregard these body forces. 

Also, if there is any net torque acting on the faces of the cube, in the limit as the volume 

is taken to a point, for a fixed stress the body would spin faster and faster.  It is easier to see 
this small cube as non-rotating, with no net torque acting upon it.   

In a Eulerian view of the world we fix our point of observation, say at a geophone and 
measure how quickly the ground moves with respect to the fixed point.  In many cases and 

in the following approach we will use a Eulerian view of the world.  Note that in other cases, 
it is easier mathematically to fix our reference frame upon the particle in motion and 

describe the wavefield from the point of view travelling with the wave (Lagrangian view).   
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Each face of the cube can experience traction or stress.  We take as convention that the 

surface stress acts on the outer surfaces of the cube upon the inner surface. Stress on a 

surface can be treated as a “stress vector” and is also called a traction vector (T


), where, in 

the limit, traction equals force per unit area at a point on one face in the direction normal to 

the face ( n̂ ): 
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Only half the stress vectors are shown.  There are an equal number on the 

remaining faces, pointing in opposite directions.  If the cube has no net stress then 

the conjugate stress vectors cancel the effect of those shown above. 



Using indicial notation, F


 can be written as ˆ
j j jF F x  .  That is, the force on a 

particular face, as the face becomes very small, has three components.  For example, the 

traction or stress vector according to the definition above, and for a particular face (
1n ) is as 

follows: 
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That is, oneach face there are three stress vectors to represent the action of force in 
three directions as the area becomes very small.  

We use the following convention to denote stress: 

  ij
 

where i is the index of the axis to which the face is normal and j is the index of the 

direction in which the component of the traction vector is applied.  When the component of 

the traction vector is applied in the direction of the basis vector, our convention is to use a 
positive value and negative when the component is applied opposite to the sense of the basis 

vector.  Sometimes  

 iiij  
 
and each component is called normal traction component.  e.g.,  

  1 2 3, ,    

Often, when ji  ,  
ijij   and , 

ij  being used to denote the shear traction 

component.  Ikelle and Amundsen (2005) use 
ij  for both normal and shear traction 

components.   

If the cube does not rotate then the shear tractions must cancel each other out, so that 
for each case, the net torque is zero, where  

 Torque= r F  

 Torque sin r F  

We obtain force from stress by multiplying the stress over the area it acts.  Force is the 
product of traction times the surface area over which the traction is applied.  

 

 



 

 

If the cube in question does not experience a net rotation, the net torque should be 0. 

Of the 18 traction components, (3 traction vectors on 6 faces of the cube) there are 
three pairs that must cancel each other’s effects if we assume that there is no net rotation 

during the application of stress.  For the three cases we get: 

    1 21 1 3 2 2 12 2 3 1
ˆ ˆ ˆ ˆx dx dx rx x dx dx rx   σ σ  

    3 23 3 1 2 2 32 2 1 3
ˆ ˆ ˆ ˆx dx dx rx x dx dx rx   σ σ  

    3 13 3 2 1 1 31 1 2 3
ˆ ˆ ˆ ˆx dx dx rx x dx dx rx   σ σ  

These three plots represent the orthogonal views 

of the stress cube down each of the major axes. From 

left to right and top-to-bottom, we are looking down 

axis 1,axis 2, and axis 3 respectively. 



In indicial notation these three cases can be written as: 

    21 1 3 12 2 30 0 0 0 0 0 0 0ijk k ijk kj j
dx dx , , ( ,r, ) , dx dx , ( r, , )σ σ    

    23 3 1 32 2 10 0 0 0 0 0 0 0ijk k ijk kj j
, , dx dx ( ,r, ) , dx dx , ( , ,r )  σ σ  

    13 3 2 31 1 20 0 0 0 0 0 0 0ijk k ijk kj j
, , dx dx ( r, , ) dx dx , , ( , ,r )  σ σ  

 

For the equation to hold true then
ijji   , which is the description of a symmetric 

tensor.   In other words, in order for the net torque to be zero the tensor must be 
symmetric. 

A tensor, tij is symmetric iff  

 0jkijkt .  

The symmetry means that the off-diagonal terms are equal
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We can show that the above condition is true by examining all the cases of I (=1,2,3).  

We can start by seeing if the example is true when i=1:
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Remember that  
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Recall: An essential working assumption for this theorem is that the body must be in 
mechanical equilibrium, that is, the body is not experiencing any change in its linear or 

angular momentum. 

 

CAUCHY’S THEO REM O R STRESS PRINCIPLE  (BEN- MENAHEM AND SINGH, 2000) 

Cauchy’s theorem states that given a plane of interest, we can define a traction vector (a 

first-order tensor) at a point (  nT


) on this plane in terms of any orthonormal reference 

system.  That means that although the stress field tensor is a second-order tensor we can 
deal with stress as a lower-order tensor, simplifying our mathematical complexity.  

According to Cauchy’s theorem and using indicial notation we can have 

  i ji jT n  

In other words, stress at a point can be manipulated as if it were only a vector, without 
loss of accuracy. 

Especially note the presence of the components jn .  The Cauchy theorem requires that 

the traction vector be a function of a plane, which is described by the direction cosine 

components ( jn ) of the unit vector ( n


) normal to the plane.  In summary:   

 j jcosn   



   1j j j jcos cos  n n  

The angle is the angle between each component of the unit vector n and the 

corresponding coordinate axis. 

We can demonstrate Cauchy’s theorem by balancing the forces on the sloping face of a 
tetrahedron against the forces on the other three sides.  This tetrahedron in the limit goes to 

a point as its dimensions become infinitesimally small.  If the equilibrium condition is met 
(no net torque) we will discover that Cauchy’s theorem holds true. 

 

 

 

It will be very helpful to note before we begin that  

 
 ,cos ini dSdS 

 

e.g.,    1 1 1n
ˆdS dS cos ,x   n  

where icos is the direction cosine with regard to the ix̂ basis vector.   

We begin by balancing forces: 
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        332211
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Note that  1x̂T


 is a three-component stress vector across the 1x plane, which has a 

normal 1x̂ , and is multiplied by 
1dS a scalar (units of area), so that each term on the right 

hand side is also a vector scaled by the value of the surface across which the stress vector is 

acting. 

 

Given that the tetrahedron is in equilibrium, then    0dSnT


, so that the first term on 

the right-hand-side must equal the sum of the remaining three, i.e. 
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. 

In other words, if we know the stress on three planes of the tetrahedron  (RHS) we can 

tell the stress on a general plane (LHS)! 

By substituting the scalar value of the surface area of each side of the tetrahedron ( idS ) 

in terms of the surface area of the main face ndS , we have:  
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Rearranging terms, we have: 

         1 1 2 2 3 3n n

n
ˆ ˆ ˆ ˆ ˆ ˆT n dS T x x T x x T x x dS

n
       

Dividing both sides by ndS , we have: 

    i
i j i j

ˆ ˆn T x x
n


n

T  

Each component of the general stress tensor on the left-hand side of the equation 
comprises components of stress of all three other faces.   

As an example, the first component of the stress vector in the 1x̂  direction on a face 

perpendicular to the 2x̂  direction is   121
ˆˆ xxT , or 21 .  The first component of stress vector 



in the 
2x̂  direction on a face perpendicular to the 2x̂  direction is  1 2 2

ˆ ˆT x x , or 
22 . The first 

component of the stress vector in the 
3x̂  direction on a face perpendicular to the 

2x̂  

direction is  1 2 3
ˆ ˆT x x , or 

23 . 

The complete stress vector on this face has three components: 
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ˆn T x
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

  

T

n
, or 

    2 2 21 1 22 2 23 3
ˆ ˆ ˆ ˆT x x x x    n  

as expressed in the geological convention.  From here we can further generalize the 

example and examine the contribution from each face to the 1x̂ component of the stress 

vector on the general face, which we have shown is the result of summing the contributions 

on the rest of the tetrahedron: 

    1 1 1 11 2 21 3 31 1
ˆ ˆx x    T n n n  

 

In indicial notation, all the cases can be summarized as: 

 
i j jiT n  

   -> Acoustic Wave Equation 

where 
ji is the general stress tensor and  

jn  is the component of the normal to the 

plane. 

 

Some examples of stress include:  

(1) Hydrostatic stress: 
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,where  is the earth’s density,  g gravitational acceleration and h depth in the earth’s 

crust. 

(2) uni-directional stress (say only in the 1x̂ ) superimposed on lithostatic stress 

file:///C:/Users/juan/Documents/Web/ReflectSeismol09/lectures/MSWord/Acoustic%20Wave%20equation.doc%23tensors
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(3) In many geological cases, below a few kilometers depth, general stress is 

representable simply as: 

+



 


